Parallel Sorting Algorithms

- Intro: Parallelizing standard sorting algorithms
- Bubble sort, odd-even sort, Shell sort
- Quicksort
- Bucket Sort
- Sorting Networks and bitonic sort

The problem and some background

- Sorting = to order data in some order [e.g. increasingly]

Problem: Given the array \(A = [a_1, \ldots, a_n] \) sort its entries in increasing order.

Example

\(A = [3, 6, 4, 1, 3, 9] \) \(\rightarrow \) \(B := [1, 3, 3, 4, 6, 9] \)

- The keys \(a_1, \ldots, a_k \) can be integers, real numbers, etc..
- There are sequential algorithms which cost \(O(n^2) \), \(O(n \log n) \), or even \(O(n) \). They all have different characteristics and advantages and disadvantages.
- Sorting is important and is part of many applications

Assumptions on data

- Results known in sequential case: cannot sort \(n \) numbers in less than \(O(n \log n) \) comparisons - by comparing keys.
- Mergesort has lowest theoretical complexity
- Quicksort - is best in practice [even though it can potentially lead to \(O(n^2) \) time]

For illustrations, we assume we have only positive integers to sort [no loss of generality]
What speed can we expect?

- Recall $O(n \log n)$ optimal for any sequential sorting without using specific properties of keys.
- Best time we can expect based upon a sequential sorting algorithm using n processors is
 \[T_{opt,n} = \frac{O(n \log n)}{n} = O(\log n) \]
- Difficult to achieve. Do-able but with a very high pre-factor –

Rank-sort

- Brute force approach – uses a non cost-optimal method
- For each key a, count the number of keys that are $\leq a$. This gives the position where a goes in the sorted list

```java
for (i = 0; i < n; i++) {
    k = 0;
    for (j = 0; j < n; j++) {
        if (a[i] < a[j]) k++;
    }
    b[k] = a[i];
}
```

- What happens if there are duplicates? How to fix this?
- Best time that can be achieved? Needed resources?

Compare Exchange

- Let a and b be two items in a list. Compare a and b. If $a > b$ then swap a and b.
- Can be generalized to situation when a are b are sublists A and B [e.g., situation when an array is split into n/p equal parts]

Background: Merging two sorted lists

"Given two sorted list A and B, create a sorted list C which contains the items of A and $B"

- Termed a Merge operation.
Step 0:
| 1 3 5 7 9 10 | 2 4 6 8 |
C: [----------------------------------]

Step 1:
| 3 5 7 9 10 | 2 4 6 8 |
C: [1--------------------------------]

Step 2:
| 3 5 7 9 10 | 4 6 8 |
C: [1 2-----------------------------]

....

Step 9:
| 9 10 | |
C: [1 2 3 5 6 7 8 9 10]

append rest of A

Compare-Split

Problem: P_0 and P_1 each has 1 sublist. Want lower half of combined list in P_0, the other half in P_1.

Solution:
1. Exchange the sublists. Each PE has combined list.
2. Merge the combined list in each PE; (3) Retain the lower part in P_0 and upper part in P_1.

Bubble Sort: [sequential]

* First, largest number moved to the end of list by a series of compares and exchanges: a_1, a_2, a_3, ..., a_{n-1}, a_n.
* Repeat with sequence a_1, ..., a_{n-1}.
* Larger numbers move toward end [like bubbles]

```
for (i = 1; i < n; i++) {
    for (j = 0; j < n-i; j++)
        compare_exch(&a[j],&a[j+1]);
}
```

$O(n^2)$ comparisons.

Parallel Implementation

Several phases [instances of outer loop] can run in parallel – as long as one phase does not overtake next
Odd-even Sort

Variation of bubble sort – Two alternating phases, even phase and odd phase.

Even phase
Even-numbered keys \((a_{2i})\) are compare-exchanged with next odd-numbered keys \((a_{2i+1})\).

Odd phase
Odd-numbered keys \((a_{2i-1})\) are compare-exchanged with next even-numbered keys indices \((a_{2i})\).

- Can be done for \(p \leq n\).
- Requires \(n\) steps
- For \(p = n\), efficiency is \(\log(n)/n\)

Illustration for case \(n = p = 8\)

```
compare
Exchange ope.
```

Odd-even Sort - general case \(n > p\)

- Given \(p\) sublists of \(n/p\) keys in each processor
- Sort each part in each processor –
- Then perform odd-even algorithm in which each compare-exchange (pairs of items) is replaced by a compare-split (pairs of sublists)

Total Cost: Let \(m = n/p\)

- Initial sort: \(O(m \log m)\)
- \(p\) phases \((p/2\) odd + \(p/2\) even\) of exchanges followed by merges: \(O(p \times m) = O(n)\) for communication + same thing for merge.

<table>
<thead>
<tr>
<th></th>
<th>P₀</th>
<th>P₁</th>
<th>P₂</th>
<th>P₃</th>
<th>P₄</th>
<th>P₅</th>
<th>P₆</th>
<th>P₇</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Total \(T(n, p) = O(n/p \log n/p) + O(n)\).

* Efficiency

\[
E(n, p) = \frac{1}{1 + O\left(\frac{p}{\log n}\right) - O\left(\frac{\log p}{\log n}\right)}
\]

- To keep efficiency constant we need \(n\) to increase exponentially with \(p\).
- Very poor scalability – works fine when \(n \gg p\).
Quick-Sort – Background

- One of the most efficient algorithms in practice
- Worst case performance = $O(n^2)$
- Average case performance = $O(n \log_2 n)$

Main idea of QuickSort: Divide and conquer

Pivot: Select a pivot element $t = a(k)$

Split: Rearrange keys so that:
- $a(mid) = t$
- $a(i) < t$ if $i < mid$; and
- $a(i) > t$ if $i > mid$

Recursive call: Call QuickSort on the two subsets a_1, \ldots, a_{mid-1} and a_{mid+1}, \ldots, a_n

Parallelizing Quick-Sort

- Trivial implementation: Use a tree structure –
- Important: Assumes Data is initially on one processor.

Steps:
1. In PE0: Find a splitting key.
2. In PE0: Split array in two parts
3. In PE0: Send one half of the data on to PE1.
4. Repeat above *recursively* for sublists in PE0 and PE1

Example


```plaintext
>10 <12* 9 15 5 17 8 --> j=2: sp =1 no sw
>10 <12 9* 15 5 17 8 --> j=3: sp+=1 & swap -> 10 >9< 12 15* 5 17 8 --> j=4: no change
10 >9< 12 15 5* 17 8 --> j=5: sp+=1 & swap -> 10 9 >5< 15 12 17* 8 --> j=6: no change
10 9 >5< 15 12 17 8*--> j=7: sp+=1 & swap -> 10 9 5 >8< 12 17 15 --> Swap a(1) and a(sp):

8 9 5 >10< 12 17 15 --> DONE.
```

- Quick-sort processes the lists [8 9 5] and [12 17 15] recursively.
- Major limitation: initial step takes $O(n)$ - it is done on one processor. Total is $O(n)$ - speed-up is at most $\log n$.
- This is because data is assumed to be initially in one PE.

- Practical versions in which list is initially split into p Processors: use the hypercube model.
- Recursively sort halves [LAB2] Message passing version involves explicit exchange of data.
- Shared memory versions are easy: (1) do a local split (2) rearrange whole array (3) subdivide the 2 halves into $p/2$ parts and (4) decide which processors will work on each of the subparts.