Odd-even Mergesort

The main idea revolves around the Odd-Even Merge operation which merges two sorted sequences \(A \), and \(B \).

Notation:
Let \(A = [a_0, \ldots, a_{n-1}] \) and \(B = [b_0, \ldots, b_{n-1}] \) two sorted arrays. Define

\[
E(A) = [a_0, a_2, \ldots, a_{n-2}]; \quad O(A) = [a_1, a_3, \ldots, a_{n-1}]
\]

and similarly for \(B \). We will also use the notation \(\overline{a, b} \) to denote the sorted version of \(a, b \).

Issue: how to sort the union of \(A \) and \(B \) into one sorted array \(M \).

Here is the algorithm to produce \(M \):
ALGORITHM : 1. OEmerge

0. **Input:** A, B two sorted arrays of length n

 Output: Sorted array M of union of A and B

1. Obtain $C = OEmerge\{E(A), O(B)\} \equiv [c_0, \ldots, c_{n-1}]$
2. Obtain $D = OEmerge\{O(A), E(B)\} \equiv [d_0, \ldots, d_{n-1}]$
3. $M = [c_0, d_0, c_1, d_1, \ldots, c_{n-1}, d_{n-1}]$

> Steps 1 and 2 are recursive and they are also parallel.

Example: Consider the two sorted sequences

\[A = [2, 4, 6, 7] \quad B = [1, 3, 5, 8] \]

Then:

\[E(A) = [2, 6], \quad O(A) = [4, 7] \]
\[E(B) = [1, 5], \quad O(B) = [3, 8] \]
Step 1 merges (recursively) [2, 6] with [3, 8]
Result: \(C = [2, 3, 6, 8] \)

Step 2 merges (recursively) [4, 7] with [1, 5]
Result: \(D = [1, 4, 5, 7] \)

Step 3 interleaves the two arrays
Result: \([2, 1, 3, 4, 6, 5, 8, 7] \)

Finally, rearrange unordered pairs \((c_i, d_i)\):
Result: \(M = [1, 2, 3, 4, 5, 6, 7, 8] \)
Cost analysis: Unfolding the recursive calls

See how the recursive calls unfold (previous example)

\[
\begin{array}{cccc}
2 & 4 & 6 & 7 \\
E(A) & O(B) \\
2 & 6 & 3 & 8 \\
4 & 7 & 1 & 5 \\
\downarrow \text{Sort} & \downarrow \text{Sort} & \downarrow \text{Sort} & \downarrow \text{Sort} \\
2 & 8 & 6 & 3 \\
4 & 5 & 7 & 1 \\
\downarrow \text{Interleave-sort} & \downarrow \text{Interleave-sort} & \downarrow \text{Interleave-sort} & \downarrow \text{Interleave-sort} \\
2 & 3 & 6 & 8 \\
1 & 4 & 5 & 7 \\
\downarrow \text{Interleave-sort} & \downarrow \text{Interleave-sort} & \downarrow \text{Interleave-sort} & \downarrow \text{Interleave-sort} \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\]
Odd-Even Mergesort: The algorithm

Q: How can we use this to sort a sequence of numbers?

A: Build sorted sublists bottom up - starting with lists of size 2, and merging sublists into bigger ones

Odd-Even Mergesort:

- Sort arrays \([a_0, a_1], [a_2, a_3] \) etc.. \([a_{n-2}, a_{n-1}]\)

- Merge \([a_0, a_1], [a_2, a_3] \) into \([a_0, a_1, a_2, a_3]\), \([a_4, a_5]\), \([a_6, a_7]\) into \([a_4, a_5, a_6, a_7]\), etc...

- Continue merging larger and larger subsets until the whole array is sorted..
A complete example from start

Bottom level:

7 6 2 4 5 3 8 1 --> sort all pairs:

\[\begin{array}{cccccccc}
 & & & & & & & \\
 7 & 6 & 2 & 4 & 5 & 3 & 8 & 1
\end{array} \]

6 7 2 4 3 5 1 8 --> Merge by OE Merge

 EA OB OA EB

EA OB OA EB

6 4 7 2 3 8 5 1 --> Sort each set (merge pairs of singletons)

\[\begin{array}{cccccccc}
 & & & & & & & \\
 6 & 4 & 7 & 2 & 3 & 8 & 5 & 1
\end{array} \]

A B A B A B A B

\[\begin{array}{cccccccc}
 & & & & & & & \\
 6 & 4 & 7 & 2 & 3 & 8 & 5 & 1
\end{array} \]

\[\begin{array}{cccccccc}
\end{array} \]

--C-- --D--

\[\begin{array}{cccccccc}
 4 & 6 & 2 & 7 & 3 & 8 & 1 & 5
\end{array} \]

2 4 6 7 1 3 5 8 --> OE Merge sort ...

\[\begin{array}{cccccccc}
 2 & 4 & 6 & 7 & 1 & 3 & 5 & 8
\end{array} \]

\[\begin{array}{cccccccc}
 A & A & B & B & A & B
\end{array} \]

\[\begin{array}{cccccccc}
 2 & 4 & 6 & 7 & 1 & 3 & 5 & 8
\end{array} \]

\[\begin{array}{cccccccc}
 A & A & B & B
\end{array} \]
---- A ---- ---- B ---- --> recursion
2 4 6 7 1 3 5 8 OEmerge(A,B)

--EA-- OB-- --OA-- EB--
2 6 3 8 4 7 1 5 recursion

----- ---- ----- ----- OEmerge

EA OB OA EB EA OB OA EB
2 8 6 3 4 5 7 1

----- ----- ----- ---- Sort

2 8 3 6 4 5 1 7
--C-- --D-- --C-- --D-- Interleave->

2 3 6 8 1 4 5 7
-----C------- ---D------- Interleave->

1 2 3 4 5 6 7 8 <-- final array
How many steps are there?

What is the number of sequential operations?

The Odd-even mergesort algorithm consists of sorting larger and larger arrays - using the merge operation. Start with arrays of length 2. Then merge pairs of arrays of length 2 into sorted arrays of length 4. etc. The total number of operations is $O(\log_2(n))$.
A slightly simpler implementation

- Use a different version of OEmerge
- Formulated *in-place*

1. Sort even part of A: $a_0, a_2, \cdots, a_{n-1}$
2. Sort odd part of A: a_1, a_3, \cdots, a_n
3. Sort pairs: $A = \{a_0, \overline{a_1}, \overline{a_2}, \overline{a_3}, \overline{a_4} \cdots \overline{a_{n-2}}, a_{n-1}, a_n\}$

- See matlab implementation (sequential)

```
a0 a2 a4 a6 sort --\rightarrow a0 a2 a4 a6
     / / / <--compare exchange
a1 a3 a5 a7 sort --\rightarrow a1 a3 a5 a7
```
A bitonic sequence has two sub-sequences, one increasing and one decreasing. For example,

\[a_0 < a_1 < \cdots < a_{i-1} < a_i > a_{i+1} > \cdots > a_{n-2} > a_{n-1} \]

for some \(i (0 < i < n) \). ▶ A sequence is also bitonic if shifting the sequence cyclically (left or right) gives a sequence with above property.

Example: Sequences: \([4, 6, 8, 9, 3, 1]\) and \([8, 9, 3, 1, 4, 6]\) are bitonic

Find an easy way to recognize a bitonic sequence..
Property of Bitonic Sequences: Performing a compare-exchange operation on \(a_i \) with \(a_{i+n/2} \) for all \(i \), yields *two* bitonic sub-sequences.

Example:

<----Initial Bitonic sequence------->
3 5 8 9 7 4 2 1

Compare- ^-------------------^
exchanges ^-------------------^
^-------------------^
^-------------------^

<-----Bitonic sequence 1----->
3 4 2 1 7 5 8 9

What do you observe regarding these sub-sequences? [Hint: compare largest entry of one with smallest of other]
The algorithm will exploit one nice property which makes it easy to sort bitonic sequences.

Property: After compare-exchange operations with stride \(n/2 \), keys of the resulting left bitonic subsequence are all smaller than those of the right bitonic subsequence.

See previous example

Sorting a bitonic sequence:

Given a bitonic sequence, recursively perform compare-exchange operations on smaller and smaller sets [strides \(n/2, n/4, ... \)]
Example: Sorting a bitonic sequence – Process produces smaller and smaller bitonic sequences such that entries of left ones of a pair are smaller than entries in right one.

2 4 7 8 | 6 3 1 0
Comp-exch ^-----------------^ etc..
stride= 4 ^-----------------^ etc..

2 3 | 1 0 | 6 4 | 7 8
Comp-exch ^--------^ etc..
stride = 2 ^--------^ etc..

1 | 0 | 2 | 3 | 6 | 4 | 7 | 8
Comp-exch ^---^ etc..
stride = 1 ^---^ etc..

Sorted list 0 1 2 3 4 6 7 8
Bitonic sorting Uses a bottom up approach.

1. Build adjacent pairs of numbers that \(\uparrow \) and \(\downarrow \)
 \(a_1, a_2 \): \(\uparrow \), \(a_3, a_4 \) \(\downarrow \), etc.

3. Use previous idea of sorting to sort each pair of pairs into increasing numbers and them decreasing numbers, so now \(a_1, a_2, a_3, a_4 \) is \(\uparrow \), and \(a_5, a_6, a_7, a_8 \) is \(\downarrow \), etc.

4. Repeat this process. Bitonic sequences of larger and larger lengths are obtained.

5. In the final step, a single bitonic sequence is sorted into a single increasing sequence.

➤ Total cost is similar to OE-Mergesort: \(O(\log^2(n)) \) using \(n/2 \) processors.
A complete example

Phase 1

---unsorted sequence--- --> sort all pairs
7 6 2 4 5 3 8 1 --> into Up and Down
6 7 4 2 3 5 8 1 <-- Result

Phase 2

6 7 4 2 | 3 5 8 1 --> Comp/exch on each part
---|--- --> stride=2. Up for 1st half
Down for 2nd half
4 2 6 7 | 8 5 3 1
2 4 6 7 | 8 5 3 1 <-- Result
Phase 3

2 4 6 7 | 8 5 3 1 <-- Compare exchange
--------> <---------
Stride=4

2 4 | 3 1 | 8 5 | 6 7 <-- Compare exchange
Stride=2

2 | 1 | 3 | 4 | 6 | 5 | 8 | 7 <-- Compare exchange
Stride=1

1 2 3 4 5 6 7 8 <-- Final Result
Sorting networks

Odd-even merge-sort and bitonic mergesort belong to a class of sorting algorithms based on “sorting networks”.

- Multistage Networks designed specifically for the task of sorting.

Example: Sequence $A = [8, 3, 7, 2]$. Arrows indicate direction of comparator Min (down) or Max (up)]
Odd-even Mergesort

bitonic Mergesort