Odd-even Mergesort

The main idea revolves around the Odd-Even Merge operation which merges two sorted sequences A and B.

Notation:
Let $A = [a_0, \ldots, a_{n-1}]$ and $B = [b_0, \ldots, b_{n-1}]$ two sorted arrays. Define $E(A) = [a_0, a_2, \ldots, a_{n-2}]$; $O(A) = [a_1, a_3, \ldots, a_{n-1}]$ and similarly for B. We will also use the notation $\overline{a, b}$ to denote the sorted version of a, b.

Issue: how to sort the union of A and B into one sorted array M.

Here is the algorithm to produce M:

1. Obtain $C = O\text{Emerge}\{E(A), O(B)) \equiv [c_0, \ldots, c_{n-1}]$
2. Obtain $D = O\text{Emerge}\{O(A), E(B)) \equiv [d_0, \ldots, d_{n-1}]
3. $M = [c_0, \overline{d_0, c_1, d_1, \ldots, c_{n-1}, d_{n-1}}]

Steps 1 and 2 are recursive and they are also parallel.

Example: Consider the two sorted sequences $A = [2, 4, 6, 7]$ and $B = [1, 3, 5, 8]$

Then: $E(A) = [2, 6], O(A) = [4, 7]$
$E(B) = [1, 5], O(B) = [3, 8]$

Cost analysis: Unfolding the recursive calls

See how the recursive calls unfold (previous example)

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>6</th>
<th>7</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>E(A)</td>
<td>O(B)</td>
<td>O(A)</td>
<td>E(B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2]</td>
<td>[3, 8]</td>
<td>[4, 7]</td>
<td>[1, 5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2]</td>
<td>[5, 3]</td>
<td>[4, 5]</td>
<td>[7, 1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓Sort↓</td>
<td>↓Sort↓</td>
<td>↓Sort↓</td>
<td>↓Sort↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓Interleave-sort↓</td>
<td>↓Interleave-sort↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓Interleave-sort↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Odd-Even Mergesort: The algorithm

Q: How can we use this to sort a sequence of numbers?

A: Build sorted sublists bottom up - starting with lists of size 2, and merging sublists into bigger ones.

Odd-Even Mergesort:

- Sort arrays \([a_0, a_1], [a_2, a_3]\) etc.\([a_{n-2}, a_{n-1}]\)
- Merge \([a_0, a_1], [a_2, a_3]\) into \([a_0, a_1, a_2, a_3]\), \([a_4, a_5], [a_6, a_7]\) into \([a_4, a_5, a_6, a_7]\), etc...
- Continue merging larger and larger subsets until the whole array is sorted.

Complexity

1. How many steps are there?
2. What is the number of sequential operations?

The Odd-even mergesort algorithm consists of sorting larger and larger arrays - using the merge operation. Start with arrays of length 2. Then merge pairs of arrays of length 2 into sorted arrays of length 4. etc. The total number of operations is \(O(\log_2(n))\).
A slightly simpler implementation

- Use a different version of OEmerge
- Formulated *in-place*

1. Sort even part of A: $a_0, a_2, \ldots, a_{n-1}$
2. Sort odd part of A: a_1, a_3, \ldots, a_n
3. Sort pairs: $A = \{a_0, a_1, a_2, a_3, a_4 \ldots a_{n-2}, a_{n-1}, a_n\}$

- See matlab implementation (sequential)

\[
\begin{aligned}
a_0 & \ a_2 & \ a_4 & \ a_6 \text{ sort } & \rightarrow & \ a_0 & \ a_2 & \ a_4 & \ a_6 \\
/ & / & / & \text{ <--compare exchange}
\end{aligned}
\]

\[
\begin{aligned}
a_1 & \ a_3 & \ a_5 & \ a_7 \text{ sort } & \rightarrow & \ a_1 & \ a_3 & \ a_5 & \ a_7 \\
\end{aligned}
\]

Bitonic Mergesort. Definition of bitonic sequences

A bitonic sequence has two sub-sequences, one increasing and one decreasing. For example,

\[
a_0 < a_1 < \cdots < a_{i-1} < a_i > a_{i+1} > \cdots > a_{n-2} > a_{n-1}
\]

for some $i (0 < i < n)$. ▶ A sequence is also bitonic if shifting the sequence cyclically (left or right) gives a sequence with above property.

Example: Sequences: $[4 \ 6 \ 8 \ 9 \ 3 \ 1]$ and $[8 \ 9 \ 3 \ 1 \ 4 \ 6]$ are bitonic.

Find an easy way to recognize a bitonic sequence.

Property of Bitonic Sequences: Performing a compare-exchange operation on a_i with $a_{i+n/2}$ for all i, yields *two* bitonic sub-sequences.

Example:

\[
\begin{aligned}
\text{------Initial Bitonic sequence-------} & \ 3 & 5 & 8 & 9 & 7 & 4 & 2 & 1 \\
\text{Compare-exchanges} & \ \ \ \ \ \ \ \ \ ^{\text{-------------}}& \ ^{\text{-------------}}& \ \ \ \ ^{\text{-------------}}& \ ^{\text{-------------}}
\end{aligned}
\]

\[
\begin{aligned}
3 & \ 4 & 2 & 1 & \ ^{\text{Bitonic sequence}}& \ 7 & 5 & 8 & 9 & \ ^{\text{Bitonic sequence}}
\end{aligned}
\]

- What do you observe regarding these sub-sequences? [Hint: compare largest entry of one with smallest of other]

Bitonic Mergesort- Algorithm

- The algorithm will exploit one nice property which makes it easy to sort bitonic sequences.

Property: After compare-exchange operations with stride $n/2$, keys of the resulting left bitonic subsequence are all smaller than those of the right bitonic subsequence.

See previous example

Sorting a bitonic sequence:

- Given a bitonic sequence, recursively perform compare-exchange operations on smaller and smaller sets [strides $n/2$, $n/4$, ...]
Example: Sorting a bitonic sequence – Process produces smaller and smaller bitonic sequences such that entries of left ones of a pair are smaller than entries in right one.

```
Comp-exch
stride = 4
2 4 7 8 | 6 3 1 0
```

```
Comp-exch
stride = 2
2 3 1 0 | 6 4 | 7 8
```

```
Comp-exch
stride = 1
1 0 2 3 | 6 4 7 | 8
```

Sorted list: 0 1 2 3 4 6 7 8

Bitonic sorting Uses a bottom up approach.

1. Build adjacent pairs of numbers that ↑ and ↓
 \(a_1, a_2: \uparrow, a_3, a_4: \downarrow \), etc.

2. Use previous idea of sorting to sort each pair of pairs into increasing numbers and them decreasing numbers, so now \(a_1, a_2, a_3, a_4 \) is \(\uparrow \), and \(a_5, a_6, a_7, a_8 \) is \(\downarrow \), etc.

3. Repeat this process. Bitonic sequences of larger and larger lengths are obtained.

4. In the final step, a single bitonic sequence is sorted into a single increasing sequence.

 - Total cost is similar to OE-Mergesort: \(O(\log^2(n)) \) using \(n/2 \) processors.

A complete example

Phase 1

--- unsorted sequence --- --> sort all pairs

```
7 6 2 4 5 3 8 1
```

--> into Up and Down

```
6 7 4 2 3 5 8 1
```

<--- Result

Phase 2

```
6 7 4 2 | 3 5 8 1
```

<--- Comp/exch on each part

```
4 2 6 7 | 8 5 3 1
```

<--- Repeat with stride=1:

```
2 4 6 7 | 8 5 3 1
```

Phase 3

```
2 4 6 7 | 8 5 3 1
```

<--- Compare exchange

```
--------> <-------- Stride=4
```

```
2 4 | 3 1 | 8 5 | 6 7
```

<--- Compare exchange

```
Stride=2
```

```
2 | 1 | 3 | 4 | 6 | 5 | 8 | 7
```

<--- Compare exchange

```
Stride=1
```

```
1 2 3 4 5 6 7 8
```

<--- Final Result
Sorting networks

Odd-even merge-sort and bitonic mergesort belong to a class of sorting algorithms based on “sorting networks”.

- Multistage Networks designed specifically for the task of sorting.

Example: Sequence \(A = [8, 3, 7, 2] \). Arrows indicate direction of comparator Min (down) or Max (up).