GRAPH ALGORITHMS

- Introduction to graphs - representations
- Single source shortest path: Dijkstra’s algorithm
- Minimum cost spanning tree: Prim’s algorithm
- All source shortest paths
Graphs – definitions & representations

Definition: A graph $G = (V, E)$ consists of a set V of vertices and a set E of edges. The elements of E are pairs (u, v) with $u, v \in V$. If the pairs are ordered then the graph is directed, otherwise it is undirected.

Terminology:

- **Digraph** = Directed graph.
- When $(u, v) \in E$, we say that u and v are **adjacent** and that the edge (u, v) is **incident** to u and v.
A graph $G = (V, E)$ is a representation of a certain binary relation. If R is a binary relation between elements in V then, we can represent it by a graph $G = (V, E)$ as follows:

$$(u, v) \in E \iff u \ R \ v$$

- **Undirected graph \leftrightarrow symmetric relation.**

First graph: (1) R (2); (4) R (1); (2) R (3); (3) R (2); (3) R (4);

Second graph: (1) R (2); (2) R (3); (3) R (4); (4) R (1).
Assume that there are \(n \) vertices. Then the adjacency matrix is an \(n \times n \) matrix, with

\[
a_{i,j} = \begin{cases}
1 & \text{if } (i, j) \in E \\
0 & \text{Otherwise}
\end{cases}
\]

Matrix is symmetric when graph is undirected

OK scheme but wasteful for sparse graphs

More on sparse matrices later.
Definition: A weighted graph $G = (V, E, W)$ is a graph in which each edge is weighted, i.e., each edge has an associated weight. The length of a path is the sum of the weights of all the edges in the path.

The weights are usually positive numbers. [but can also be nonpositive in some applications]

Problem: Given a node s, find the shortest paths from s to all other nodes in the weighted graph G.

Called One-source shortest path problem

Another problem: Find shortest path from any vertex to any other vertex
Graphs – Dijsktra’s algorithm

- Idea of shortest path algorithm very similar to breadth-first-search.
- Good implementation for sparse graphs: Priority Queue

Differences with BFS:

- Need distances from starting node. Update these distances as we do the traversal;
- Always take the next node to be removed from queue to be the one with smallest distance.

- We will consider simple implementations for dense graphs
ALGORITHM : 1. \textit{Shortest_Path}(G,r)

\textit{Initialize}:
1. For each \(v \in V \) set:
2. \(d[v] = 0 \) if \(v == r \) and \(d[v] = \infty \) otherwise.
3. Set \(V_T = \emptyset \).

\textit{Iterate}:
4. While \(V_T \neq V \) do
5. Find \(u \) s.t. \(d[u] = \min[d[v], v \in V - V_T] \)
6. \(V_T = V_T \cup \{u\} \)
7. For each \(v \in V - V_T \) set:
8. \(d[v] = \min[d[v], d[u] + w(u, v)] \)
9. End
10. EndWhile

\textbf{Cost:} \(O(n^2) \).
Dijsktra’s Algorithm – Example

Original Graph

Resulting Tree & Distances
Dijsktra’s Algorithm – Parallel Implementation

- First observation: Difficult to parallelize the while loop..
- Fairly easy to parallelize costlier steps of while loop within each iteration.

Decomposition:

- Split Distance array in \(p \) parts, uniformly.
- Split weight matrix column-wise in \(p \) blocks
- Goal: should get cost down from \(O(n^2) \) to \(O(n^2/p) \)
Line 5 of Algorithm: Requires computing a local min. and doing a reduction operation. Cost of \(k \)-th step:

\[
\frac{(n - k)}{p}\omega + \log(p)(t_s + t_w)
\]

Line 6: Broadcast of \(u, d(u) \) to all. Cost:

\[
\log(p)(t_s + 2 \times t_w)
\]

Lines 7-8-9: requires no communication. But update itself costs \(\frac{n-k}{p}\omega \) (Assuming \(V - V_T \) uniformly distributed each time)

Total (Order only) \(\Theta(n^2/p) + \Theta(n \log(p)) \)

Cost-optimal if \(p = O(n/\log(n)) \).
Minimum Cost Spanning Tree (Undirected Graphs)

Definitions: A spanning tree of a graph $G = (V, E)$ is a connected subgraph $T = (V_T, E_T)$ of G, which is a tree and whose vertices are all the vertices of G, i.e., $V_T = V$. The cost of T is the sum of the weights of all edges e of the tree,

$$\text{Cost}(T) = \sum_{e \in E_T} w(e)$$

Problem: Given a weighted graph find its minimum cost spanning tree. (MCST)

Easy to see that the MCST must indeed be a tree.
Applications:

• Minimum cost transit system: want to link all localities in a given city; but would like the total of all distances over all route segments to be minimum.

• Network of computers: need to broadcast a message to all nodes in a network from arbitrary nodes. The minimum cost spanning tree allows to do so in best time on the average

Two solutions to the problem:

1. Prim’s algorithm: almost identical with Dijkstra’s shortest path algorithm;

2. Kruskal’s algorithm: Adds one edge at a time, in increasing order of weight.
ALGORITHM: 2. \textit{Prim}(G,r)

\textbf{Initialize:}
1. For each \(v \in V\) set:
2. \(d[v] = 0\) if \(v = r\) and \(d[v] = \infty\) otherwise.
3. Set \(V_T = \emptyset\).

\textbf{Iterate:}
4. While \(V_T \neq V\) do
5. Find \(u\) s.t. \(d[u] = \min\{d[v], v \in V - V_T\}\)
6. \(V_T = V_T \cup \{u\}\)
7. For each \(v \in V - V_T\) set:
8. \(d[v] = \min\{d[v], w(u, v)\}\) \hspace{1cm} \text{← Only Change from Dijkstra}
9. End
10. EndWhile
Prim’s Algorithm – Example

Step	Tree	Pseudo-Distances
0 | ∅ | [0, ∞, ∞, ∞, ∞, ∞, ∞, ∞]
1 | A | [, 1, 4, ∞, ∞, ∞, ∞]
2 | A B | [, , 4, 2, 3, ∞, ∞]
3 | |
4 | |
5 | |
6 | |
7 | A B C D E F G |

Graphs
Prim’s Algorithm – Parallel implementation

- Cost = identical with Dijkstra’s algorithm
- Parallel Implementation = identical with Dijkstra’s algorithm
The all-pairs Shortest path problem

The problem:
Find the shortest path between any pair of vertices i and j

- Can be solved by using the shortest path algorithm from each node in turn. Cost = $O(n^3)$.

- Another solution: Floyd’s algorithm [also referred to as Floyd-Warshall algorithm] – whose cost is also $O(n^3)$.

- Builds incrementally shortest paths between i and j where all intermediate vertices are in the set

\[S_k = \{1, 2, \cdots, k\}. \]
Observation:

Shortest path through $S_k = \text{either shortest path through } S_{k-1} \text{ or shortest path from } i \text{ to } k \text{ followed by shortest path from } k \text{ to } j$ through S_{k-1}. Hence,

$$d_{ij}^{(k)} = \begin{cases}
 w_{ij} & \text{if } k = 0 \\
 \min[d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}] & \text{if } k \geq 1
\end{cases}$$

- Algorithm: compute these distances for $k = 1, ..., n$
- Computation can be done in place [i.e., only one matrix is needed.] This is because k-th column (and row) of $D^{(k)}$ does not change from $D^{(k-1)}$ [set $i = k$ and then $j = k$ in above formulas]
ALGORITHM : 3. *Floyd(G)*

0. $D^{(0)} = W$
1. For $k = 1 : n$ Do:
2. For $i = 1 : n$ Do:
3. For $j = 1 : n$ Do:
4. $d_{ij}^{(k)} = \min[d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}]$
5. End
6. End
7. End

- Note: computation pattern somewhat similar to Gaussian Elimination.

- Like GE we can define a broadcast version and a pipelined version of the algorithm.
Can devise a row-based algorithm with broadcasts [No need to interleave rows into processors for better load balance]

Can devise a pipelined row algorithm

Can devise 2-D mapping generalizations of the above two options.