Graphs – definitions & representations

Definition: A graph $G = (V, E)$ consists of a set V of vertices and a set E of edges. The elements of E are pairs (u, v) with $u, v \in V$. If the pairs are ordered then the graph is directed, otherwise it is undirected.

Terminology:

- Digraph = Directed graph.
- When $(u, v) \in E$, we say that u and v are adjacent and that the edge (u, v) is incident to u and v.

A graph $G = (V, E)$ is a representation of a certain binary relation. If R is a binary relation between elements in V then, we can represent it by a graph $G = (V, E)$ as follows:

$$(u, v) \in E \leftrightarrow u \text{ R } v$$

- Undirected graph \leftrightarrow symmetric relation.

First graph: (1) R (2); (4) R (1); (2) R (3); (3) R (2); (3) R (4);

Second graph: (1) R (2); (2) R (3); (3) R (4); (4) R (1).

Matrix is symmetric when graph is undirected

OK scheme but wasteful for sparse graphs

More on sparse matrices later.
Definition: A weighted graph $G = (V, E, W)$ is a graph in which each edge is weighted, i.e., each edge has an associated weight. The length of a path is the sum of the weights of all the edges in the path.

- The weights are usually positive numbers. [but can also be nonpositive in some applications]

Problem: Given a node s, find the shortest paths from s to all other nodes in the weighted graph G.

- Called One-source shortest path problem
- Another problem: Find shortest path from any vertex to any other vertex

ALGORITHM : 1. Shortest Path(G, r)

Initialize:
1. For each $v \in V$ set:
2. $d[v] = 0$ if $v == r$ and $d[v] = \infty$ otherwise.
3. Set $V_T = \emptyset$.

Iterate:
4. While $V_T \neq V$ do
5. Find u s.t. $d[u] = \min\{d[v], v \in V - V_T\}$
6. $V_T = V_T \cup \{u\}$
7. For each $v \in V - V_T$ set:
8. $d[v] = \min\{d[v], d[u] + w(u, v)\}$
9. End
10. EndWhile

- Cost: $O(n^2)$.

Graphs – Dijsktra’s algorithm

- Idea of shortest path algorithm very similar to breadth-first-search.
- Good implementation for sparse graphs: Priority Queue

Differences with BFS:
- Need distances from starting node. Update these distances as we do the traversal;
- Always take the next node to be removed from queue to be the one with smallest distance.

- We will consider simple implementations for dense graphs

Dijsktra’s Algorithm – Example

Original Graph

Resulting Tree & Distances
Dijsktra’s Algorithm – Parallel Implementation

- First observation: Difficult to parallelize the while loop.
- Fairly easy to parallelize costlier steps of while loop within each iteration.

Decomposition:

- Split Distance array in p parts, uniformly.
- Split weight matrix column-wise in p blocks.
- Goal: should get cost down from $O(n^2)$ to $O(n^2/p)$

Line 5 of Algorithm: Requires computing a local min. and doing a reduction operation. Cost of k-th step:

$$\frac{(n - k)}{p} \omega + \log(p)(t_s + t_w)$$

Line 6: Broadcast of $u, d(u)$ to all. Cost:

$$\log(p)(t_s + 2 \times t_w)$$

Lines 7-8-9: requires no communication. But update itself costs $\frac{n-k}{p} \omega$ (Assuming $V - V_T$ uniformly distributed each time)

Total (Order only): $\Theta(n^2/p) + \Theta(n \log(p))$

Cost-optimal if $p = O(n/ \log(n))$.

Minimum Cost Spanning Tree (Undirected Graphs)

Definitions: A spanning tree of a graph $G = (V, E)$ is a connected subgraph $T = (V_T, E_T)$ of G, which is a tree and whose vertices are all the vertices of G, i.e., $V_T = V$. The cost of T is the sum of the weights of all edges e of the tree,

$$Cost(T) = \sum_{e \in E_T} w(e)$$

Problem: Given a weighted graph find its minimum cost spanning tree. (MCST)

- Easy to see that the MCST must indeed be a tree.

Applications:

- Minimum cost transit system: want to link all localities in a given city; but would like the total of all distances over all route segments to be minimum.
- Network of computers: need to broadcast a message to all nodes in a network from arbitrary nodes. The minimum cost spanning tree allows to do so in best time on the average.

Two solutions to the problem:

1. **Prim’s algorithm:** almost identical with Dijkstra’s shortest path algorithm;
2. **Kruskal’s algorithm:** Adds one edge at a time, in increasing order of weight.
Minimum Cost Spanning Tree: Prim’s Algorithm

Algorithm: 2. Prim(G,r)

Initialize:
1. For each \(v \in V \) set:
2. \(d[v] = 0 \) if \(v == r \) and \(d[v] = \infty \) otherwise.
3. Set \(V_T = \emptyset \).

Iterate:
4. While \(V_T \neq V \) do
5. Find \(u \) s.t. \(d[u] = \min[d[v], v \in V - V_T] \)
6. \(V_T = V_T \cup \{u\} \)
7. For each \(v \in V - V_T \) set:
8. \(d[v] = \min[d[v], w(u,v)] \) ← Only Change from Dijkstra
9. End
10. EndWhile

Prim’s Algorithm – Example

Step Tree Pseudo-Distances

<table>
<thead>
<tr>
<th>Step</th>
<th>Tree</th>
<th>Pseudo-Distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
<td>([0,\infty,\infty,\infty,\infty,\infty,\infty])</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>([1,1,4,\infty,\infty,\infty,\infty])</td>
</tr>
<tr>
<td>2</td>
<td>A B</td>
<td>([1,1,4,2,3,\infty,\infty])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A B</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A B</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A B</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A B</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A B C D E F G</td>
<td></td>
</tr>
</tbody>
</table>

Prim’s Algorithm – Parallel implementation

- Cost = identical with Dijkstra’s algorithm
- Parallel Implementation = identical with Dijkstra’s algorithm

The all-pairs Shortest path problem

The problem:

Find the shortest path between any pair of vertices \(i \) and \(j \)

- Can be solved by using the shortest path algorithm from each node in turn. Cost = \(O(n^3) \).
- Another solution: Floyd’s algorithm [also referred to as Floyd-Warshall algorithm] – whose cost is also \(O(n^3) \).
- Builds incrementally shortest paths between \(i \) and \(j \) where all intermediate vertices are in the set

\[S_k = \{1,2,\cdots,k\}. \]
Observation:

Shortest path through S_k = either shortest path through S_{k-1} or shortest path from i to k followed by shortest path from k to j through S_{k-1}. Hence,

$$d^{(k)}_{ij} = \begin{cases} w_{ij} & \text{if } k = 0 \\ \min[d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}] & \text{if } k \geq 1 \end{cases}$$

Algorithm: compute these distances for $k = 1, \ldots, n$

- Computation can be done in place [i.e., only one matrix is needed.] This is because k-th column (and row) of $D^{(k-1)}$ does not change from $D^{(k-1)}$ [set $i = k$ and then $j = k$ in above formulas]

ALGORITHM : 3. Floyd(G)

1. $D^{(0)} = W$
2. For $k = 1 : n$ Do:
3. For $i = 1 : n$ Do:
4. $d^{(k)}_{ij} = \min[d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}]$
5. End
6. End
7. End

- Note: computation pattern somewhat similar to Gaussian Elimination.
- Like GE we can define a broadcast version and a pipelined version of the algorithm.

- Can devise a row-based algorithm with broadcasts [No need to interleave rows into processors for better load balance]
- Can devise a pipelined row algorithm
- Can devise 2-D mapping generalizations of the above two options.