An introduction to

The CUDA programming environment

- Introduction: the rise of GPUs
- NVIDIA GPUs and CUDA
- Basic syntax
- Memory organization
- Examples
GPUs and the CUDA environment

- GPUs [Graphics Processing Units] are very powerful co-processors for graphics.
- Idea: why not use them for numerical computing?
- GPUs are present in every workstation - for graphics processing

Find out what graphics card you have on your desktop computer or laptop.

- Characteristics:
 - large data arrays, streaming data
 - fine-grain SIMD computations
 - single precision floating point computation
Difficulty: software.

Solution: CUDA

CUDA = Compute Unified Device Architecture

Introduced in 2006 for NVIDIA GPUs

Idea of attached processor [or co-processor]—Not new [e.g. FPS AP-120B ‘array processor’ unveiled in 1981]

Terminology

GPGPU: General purpose GPU

GPU-accelerated computing: use GPUs along a CPU to speed-up computing
GPUs and the CUDA environment

- Currently a very popular approach to: inexpensive supercomputing
- See a series of articles in 2008 - when this whole thing started: *CUDA - supercomputing for the masses* by Rob Farber in ‘Dr. Dobbs’

 http://www.ddj.com/cpp/207200659

- You can buy a Teraflop peak power for around $1,500.
- Amazingly this price has remained \sim the same – Difference: you get more from one GPU

Megatrend: GPU Performance being tuned for Deep Learning (single precision ‘tensor-flops’, vs FP64 teraflops).
<table>
<thead>
<tr>
<th>GPU model</th>
<th>Price</th>
<th>FP64 Perf.</th>
<th>$ / TFLOPS</th>
<th>DL (FP32) Perf.</th>
<th>$ / TensFPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V100 16GB</td>
<td>$10,664*</td>
<td>7 TFLOPS</td>
<td>$1,523</td>
<td>112 TFLOPS</td>
<td>$95.21</td>
</tr>
<tr>
<td>32GB</td>
<td>$11,458*</td>
<td></td>
<td>$1,637</td>
<td></td>
<td>$102.3</td>
</tr>
<tr>
<td>P100 (16GB)</td>
<td>$ 7,374</td>
<td>4.7 TFLOPS</td>
<td>$ 1,569</td>
<td>18.7 TFLOPS</td>
<td>$394.33</td>
</tr>
</tbody>
</table>

* Note the huge jump in performance for Deep learning made in recent generation GPUs (Tesla V100).

* ~ 10 years ago: 1 TFLOPS for approximately $1,350 (Tesla C2050) [see that Dr. Dobbs article]
The NVIDIA products

4 families

- **Tegra:** Mobile and embedded devices (e.g., phones)
- **GeForce:** Consumer graphics, gaming
- **Quadro:** High-performance visualization
- **Tesla:** High performance computing (Tesla M2050)
Example: The ‘cudaxx’ cluster in cselabs

To do in class: Look at the ‘cudaxx’ cluster – Analyze one node: “cuda01.cselabs.umn.edu” –

- What GPU?

- Use the command `lspci`: Explore the unix command `lspci` before class. Look for “GPU” or “Graphics”

- PCI: Peripheral Component Interconnet [bus that attaches peripheral devices, e.g., USB, audio, RAID, Ethernet, …]

- Another (unix) command: `nvidia-smi` (Nvidia System Management Interface) – For nvidia GPUs only

- Read about compute capability in Nvidia Documentation. What is it for the nodes of the cudaxx cluster?

https://www.techpowerup.com/gpu-specs/geforce-gtx-470.c267
Example: NVIDIA GeForce RTX 2080 Ti

- CUDA cores: 4,352
- Base Clock speed: 1350MHz
- Boosted Clock speed: 1545MHz
- FP32 peak speed: 13.44 TFlops
- RTX-OPS: 76T
- Memory capacity: 11GB GDDR6
- Memory bandwidth: 616 GB/sec
- Memory speed: 14 Gbps
- Memory interface width: 352-bit
- Memory bandwidth: 616 GBps
CUDA environment: Device and Host

- Host processor (CPU) and Device (GPU)
- Model built around many threads executed on the device

SIMT: Single Instruction Multiple Threads

- A Kernel == a piece of code executed on the device
- Each kernel is run in a thread. Blocks of threads are executed on a Streaming Multiprocessor (SM). Details later.
- Idea: generate many threads (in the form of an SIMT code) which will be run on the GPU
- Host code may be C, C++, fortran90, ..
- Kernels are in C with CUDA syntax extensions
The **CUDA** environment: The big picture

- A host (CPU) and an attached device (GPU)

Typical program:

1. Generate data on CPU
2. Allocate memory on GPU
   ```
   cudaMalloc(...)  
   ```
3. Send data Host \(\to\) GPU
   ```
   cudaMemcpy(...)  
   ```
4. Execute GPU ‘kernel’:
   ```
   kernel \(\llll\ldots\rrrr\)  
   ```
5. Copy data GPU \(\to\) CPU
   ```
   cudaMemcpy(...)  
   ```
Threads, Warps, Blocks, and Grids

- A group of 32 Threads is a Warp
- Warps grouped into thread Blocks
- Blocks have $\leq 1,024$ threads
- Thread blocks are grouped into grids.

Thread \rightarrow Block of Threads \rightarrow Grid of Blocks

- Lots of flexibility in selecting block/grid shapes and dimensions
Blocks may be 1-D, 2-D, or 3-D,

Grids can also be 1-D, 2-D, or 3-D

Related kernel variables:

- Grid: `gridDim`, `blockIdx`
- Block: `blockDim`, `threadIdx`

`blockIdx`, `threadIdx` are 3-Dimensional - can invoke:

- `blockIdx.x`, `blockIdx.y`, `blockIdx.z`

and:

- `threadIdx.x`, `threadIdx.y`, `threadIdx.z`
Function Type Qualifiers

__device__ : declares a function which executes on device. [Callable from the device only.]

__global__ declares a kernel function - which is Executed on device, Callable from host only.

__host__ declares a host function [executed on host, callable from host only]

If no qualifiers → considered host [but can also combine __host__ and __device__]

➤ There are some restrictions – see docs. For example recursion not supported on device. ...
Hello World in Cuda-ish:

```c
#include <stdio.h>
__global__ void helloFromGPU(){
    printf("Hello World-Thread: %d\n", threadIdx.x);
}

int main(void) {
    helloFromGPU<<<1,16>>>();
    cudaDeviceSynchronize();
    return (0);
}
```
Example:

```c
// Kernel definition:
__global__ void vecAdd(float *x, float *y, float *z)
{
    int i = threadIdx.x;
    z[i] = x[i] + y[i];
}

int main {
    ...
    /* Kernel call: [1 Block of $n$ threads] */
    vecAdd <<<1, n>>> (xd, yd, zd);
}
```
CUDA environment: Basic syntax

Kernels are called with the `<<< >>>` construct:

```plaintext
some_kernel_fun <<< Dg, Db, Ns >>>
```

- **Dg** = dimensions of the grid (type `dim3`)
- **Db** = dimensions of the block (type `dim3`)
- **Ns** = number of bytes shared memory dynamically allocated / block (type `size_t`). 0 default

- What is type `dim3`? An integer vector type `[uint3]` - used to specify dimensions
- Declare as: `dim3 var(dimx, dimy, dimz),`
- ... retrieve components as: `var.x, var.y, var.z`
- Unspecified components set to 1
Built-in variables

- `gridDim` is of type `dim3`. Contains dimension of grid. Similarly for `blockDim`.

- Can retrieve block dimensions from `blockDim.x, blockDim.y, blockDim.z`.

- `blockIdx` *(type: `uint3`)* contains block ID within grid.

- `threadIdx` *(type: `uint3`)* contains thread index within block.
Example:

```c
// Kernel definition
__global__ void MatAdd(float A[N][N],
    float B[N][N], float C[N][N]) {
    int i = threadIdx.x;
    int j = threadIdx.y;
    C[i][j] = A[i][j] + B[i][j];
}

int main()
{
    ...
    // Kernel invocation
    dim3 dimBlock(N, N);
    MatAdd<<<1, dimBlock>>>(A, B, C);
}
```
__global__ void KernelFun(..)
//host:
dim3 DimGrid(200,10); //2000 thread blocks
dim3 DimBlock(4,8,8); //256 threads per block
size_t SharedMemBytes=64;//shared mem. per block
KernelFun<<<DimGrid,DimBlock,SharedMemBytes>>>(..)

How to get index of a thread?

For a 1-D block: Index of a thread & its thread ID are the same

For a 2-D block of size (Dx, Dy): thread ID of a thread of index (x, y) is (x + y*Dx);

For 3-D blocks of size (Dx, Dy, Dz): thread ID of a thread of index (x, y, z) is (x + y*Dx + z*Dx*Dy).
Threads can access their local memories, shared memory of their block, and global memory.
CUDA environment: Device & Host Memory

- Device (GPU) memory distinct from that of host.
- Kernels operate only on device memory
- Also: Texture memory [called CUDA arrays] –
- Can allocate device memory with cudaMemcpy()
- Copy from host to device with cudaMemcpy()
- Can also use cudaMemcpyPitch(), cudaMemcpy3D(), cudaMemcpy2D(), cudaMemcpy3D(), [see prog. guide]
CUDA environment: Shared vs. Global Memory

- By default, the kernel will use global memory
- However, shared memory is *much* faster and should be used when possible
- Declarations:

```c
__shared__ float, int, ...
```
CUDA documentation, resources

- Main document from the CUDA site:

- A PDF document also available [short-cut available in Canvas]

- General documentation site:
 https://docs.nvidia.com/

- CUDA sample source codes:
 https://docs.nvidia.com/cuda/cuda-samples/index.html
New: openACC

- Note: Under development.
- Main Idea: use directives – Very similar to openMP
- Supported by vendors: there is a chance it will replace CUDA (?)

Importantly: it is now part of gcc.7.xx

Example: product of two vectors

- Much simpler than under CUDA [used to be test1.cu]
- Need to load module gcc version 7: [not default on cudaxx cluster]

```
module load soft/gcc/7.1
```

- Docs and Details: https://gcc.gnu.org/wiki/OpenACC
```c
int main(void) {
  float *x, *y;

/* -------------------------- size of arrays */
  const int N = 20;
  size_t size = N * sizeof(float);
/* -------------------------- Allocate array and set values */
  y = (float *)malloc(size);
  x = (float *)malloc(size);
  for (int i = 0; i < N; i++) {
    y[i] = (float) (i + 1);
    x[i] = (float) (i - 1);
  }

#pragma acc parallel loop
  for (int i = 0; i < N; i++)
    y[i] = y[i] * x[i];
/* -------------------------- print result */
  for (int i = 0; i < N; i++)
    printf("%d %8.2f\n", i, y[i]);
/* -------------------------- free memory */
  free(x); free(y);
}
```