Auto-Tuning RocksDB by machine learning

Yuanli Wang
William Batu
Background and motivation

• TiKV: open-source transactional key-value database
 • Use RocksDB as backend storage engine
 • Raft consensus algorithm
 • https://github.com/tikv/

• RocksDB: a persistent key-value store engine
 • RocksDB has many configurations. It is hard to choose proper values in production.
 • The goal is to auto-tune RocksDB in real time for different workloads

• Dana Van Aken et al, Automatic Database Management System Tuning Through Large-scale Machine Learning, SIGMOD 2017.
Pipeline

1. Select a metric to be optimized
2. Dataset training
3. Recommended knobs
4. Change knobs
5. Add new sample to training dataset

TiKV

Controller

Benchmark and collect metrics

DataModel

GPMModel
ML model

• Gaussian Process Regression: a non-parametric model based on the Gaussian Distribution

• Then apply the estimation to Bayesian optimization
 • Use GPR to estimates the distribution of the sample—the mean of X, m(X), and its standard deviation, s(X).
 • Use the acquisition function to guide the next sample, and give the recommended value.

• Explore && exploit
 • Exploration: The function explores new points in unknown areas where there is currently insufficient data.
 • Exploitation: The function uses the data for model training and estimation to find the optimal prediction in the known areas with sufficient data.
 • Use Upper Confidence Bound function to do tradeoff
 • U(X) = m(X) + k*s(X)
Workload & knobs

- Workloads: generated by ycsb
 - write-heavy, range-scan (both long and short), point-lookup [2]

- Knobs:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Workload/expected behaviors</th>
<th>Valid range/value set</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable-auto-compactions</td>
<td>write-heavy: turning on is better</td>
<td>{1, 0}</td>
</tr>
<tr>
<td></td>
<td>point-lookup, range-scan: turning off is better</td>
<td></td>
</tr>
<tr>
<td>block-size</td>
<td>point-lookup: the smaller the better</td>
<td>{4k,8k,16k,32k,64k}</td>
</tr>
<tr>
<td></td>
<td>range-scan: the larger the better</td>
<td></td>
</tr>
<tr>
<td>bloom-filter-bits-per-key</td>
<td>point-lookup, range-scan: larger the better</td>
<td>[5,10,15,20]</td>
</tr>
<tr>
<td>optimize-filters-for-hits</td>
<td>point-lookup, range-scan: turning off is better</td>
<td>{1,0}</td>
</tr>
</tbody>
</table>

- Metrics: Throughput / Latency
Evaluation

- workload=pntlookup80
- knobs={'bloom-filter-bits-per-key', 'optimize-filters-for-hits', 'block-size', 'disable-auto-compactions'}
- metric=get_latency

More details:
Evaluation

- workload=pntlookup80
- knobs={rocksdb.writecf.bloom-filter-bits-per-key, rocksdb.defaultcf.bloom-filter-bits-per-key, rocksdb.writecf.optimize-filters-for-hits, rocksdb.defaultcf.block-size, rocksdb.defaultcf.disable-auto-compactions}
- metric=get_throughput

More details:
Evaluation

- workload=shortscan
- knobs={'Bloom-filter-bits-per-key', 'optimize-filters-for-hits', 'block-size', 'disable-auto-compactions'}
- metric=scan_latency

Conclusion and limitations

Conclusions:

• ML can help finding patterns that might be omitted by DBA
 • Some parameters have little effect on the results.
 • The effect of some parameters is in contrary to expectations.
 • Some workload may trigger other background operations that DBA does not know.

Limitations:

• Changing some knobs may need restarting DB.
 • -> CANNOT restart!

• Use static ycsb setting.
 • -> Workloads in production are dynamically changed

More details:
Auto-Tune RocksDB Rate Limiter

- Rate-Limiter: control the speed of background write operations, like compaction and flush.
 - https://github.com/facebook/rocksdb/wiki/Rate-Limiter
 - https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html

- Large/Burst write operations when doing compactions may cause a large read latency on user side.

- Proposal:
 - Forecast the upcoming read I/O from user
 - Auto tune the upper-bound of rate limiter(write I/O) based on predicted value
Workload forecast

- Query-based Workload Forecasting for Self-Driving Database Management Systems [SIGMOD ‘18]
- Linear Regression in a recent time window
 - Workloads — real read workload threads
 - Prediction — predicted read I/O (Bytes)
 - Rate Limit — auto-tuned rate limiter value (Bytes)
Workload forecast
Workload forecast
Implementation

- Implemented in C++[RocksDB side] and Rust[TiKV side]
- Predict and re-config every 5 seconds
Evaluation #1

• Periodic read workload:
 • Round_1: 1 from 20:49:21 to 20:59:21
 • Round_2: 9 from 20:59:23 to 21:09:23
 • Round_3: 1 from 21:09:25 to 21:19:25
 • Round_4: 9 from 21:19:27 to 21:29:27
 • Round_5: 1 from 21:29:29 to 21:39:29
 • Round_7: 1 from 21:49:33 to 21:59:33
 • Round_8: 9 from 21:59:35 to 22:09:35
 • Round_9: 1 from 22:09:37 to 22:19:37

• Steady write workload
Evaluation #1

Without auto-tuned Rate Limiter
Evaluation #1

With auto-tuned Rate Limiter

Reduced Latency [average gRPC message duration]

Improved throughput [QPS]
Evaluation #2

• Running steady read workload, and suddenly inject a write workload (to trigger burst compaction/flush operations).
Evaluation #2

Without auto-tuned Rate Limiter
Evaluation #2

With auto-tuned Rate Limiter

Reduced Latency [average gRPC message duration]

Less fluctuation [QPS]
Potential future of self-driving database

• Self-driving
• Elastic (Automatically scale on cloud/serverless environment)