
Heapsort

Homework 1 posted,
due Sunday Oct. 1

Announcements

Radix sort

Use a stable sort to sort from the
least significant digit to most

Psuedo code: (A=input)
for i = 1 to d

stable sort of A on digit i
// i.e. use counting sort

3

Radix sort

Stable means you can draw lines
without crossing for a single digit

4

Radix sort

Run time?

5

Radix sort

Run time?

O((b/r) (n+2r))
b-bits total, r bits per 'digit'
d = b/r digits
Each count sort takes O(n + 2r)
runs count sort d times...
O(d(n+2r)) = O(b/r (n + 2r))

6

Radix sort

Run time?

if b < lg(n), Θ(n)
if b > lg(n), Θ(n lg n)

7

Heapsort

Binary tree as array

It is possible to represent
binary trees as an array

1|2|3|4|5|6|7|8|9|10

Binary tree as array

index 'i' is the parent of '2i' and
'2i+1'

1|2|3|4|5|6|7|8|9|10

Binary tree as array

Is it possible to represent
any tree with a constant
branching factor as an array?

Binary tree as array

Is it possible to represent
any tree with a constant
branching factor as an array?

Yes, but the notation is awkward

Heaps

A max heap is a tree where the
parent is larger than its children
(A min heap is the opposite)

Heapsort

The idea behind heapsort is to:

1. Build a heap

2. Pull out the largest (root)
and re-compile the heap

3. (repeat)

Heapsort

To do this, we will define
subroutines:

1. Max-Heapify = maintains heap
property

2. Build-Max-Heap = make
sequence into a max-heap

Max-Heapify

Input: a root of two max-heaps
Output: a max-heap

Max-Heapify

Pseudocode Max-Heapify(A,i):
left = left(i) // 2*i
right = right(i) // 2*i+1
L = arg_max(A[left], A[right], A[i])
if (L not i)

exchange A[i] with A[L]
Max-Heapify(A, L)

// now make me do it!

Max-Heapify

Runtime?

Max-Heapify

Runtime?

Obviously (is it?): lg n

T(n) = T(2/3 n) + O(1) // why?
 Or...
T(n) = T(1/2 n) + O(1)

Master's theorem

Master's theorem: (proof 4.6)
For a > 1, b > 1,T(n) = a T(n/b) + f(n)

If f(n) is... (3 cases)
O(nc) for c < log

b
 a, T(n) is Θ(nlogb a)

Θ(nlogb a), then T(n) is Θ(nlogb a lg n)
Ω(nc) for c > log

b
 a, T(n) is Θ(f(n))

Max-Heapify

Runtime?

Obviously (is it?): lg n

T(n) = T(2/3 n) + O(1) // why?
 Or...
T(n) = T(1/2 n) + O(1) = O(lg n)

Build-Max-Heap

Next we build a full heap from
an unsorted sequence

Build-Max-Heap(A)
for i = floor(A.length/2) to 1

Heapify(A, i)

Build-Max-Heap

Red part is already Heapified

Build-Max-Heap

Correctness:
Base: Each alone leaf is a

max-heap
Step: if A[i] to A[n] are in a heap,

then Heapify(A, i-1) will make
i-1 a heap as well

Termination: loop ends at i=1,
which is the root (so all heap)

Build-Max-Heap

Runtime?

Build-Max-Heap

Runtime?

O(n lg n) is obvious, but we can
get a better bound...

Show ceiling(n/2h+1) nodes at
any height 'h'

Build-Max-Heap

Heapify from height 'h' takes O(h)

sum
h=0

lg n ceiling(n/2h+1) O(h)
=O(n sum

h=0
lg n ceiling(h/2h+1))

(sum
x=0

∞ k xk = x/(1-x)2, x=1/2)
=O(n 4/2) = O(n)

Heapsort

Heapsort(A):
Build-Max-Heap(A)
for i = A.length to 2

Swap A[1], A[i]
A.heapsize = A.heapsize – 1
Max-Heapify(A, 1)

Heapsort

Heapsort

Runtime?

Heapsort

Runtime?

Run Max-Heapify O(n) times
So... O(n lg n)

Priority queues

Heaps can also be used to
implement priority queues
(i.e. airplane boarding lines)

Operations supported are:
Insert, Maximum, Exctract-Max
and Increase-key

Priority queues

Maximum(A):
return A[1]

Extract-Max(A):
max = A[1]
A[1] = A.heapsize
A.heapsize = A.heapsize – 1
Max-Heapify(A, 1), return max

Priority queues

Increase-key(A, i, key):
A[i] = key
while (i>1 and A [floor(i/2)] < A[i])

swap A[i], A [floor(i/2)]
i = floor(i/2)

Opposite of Max-Heapify... move
high keys up instead of low down

Priority queues

Insert(A, key):
A.heapsize = A.heapsize + 1
A [A.heapsize] = -∞
Increase-key(A, A.heapsize, key)

Priority queues

Runtime?

Maximum =
Extract-Max =
Increase-Key =
Insert =

Priority queues

Runtime?

Maximum = O(1)
Extract-Max = O(lg n)
Increase-Key = O(lg n)
Insert = O(lg n)

Sorting comparisons:

Name Average Worst-case
Insertion[s,i] O(n2) O(n2)
Merge[s,p] O(n lg n) O(n lg n)
Heap[i] O(n lg n) O(n lg n)
Quick[p] O(n lg n) O(n2)
Counting[s] O(n + k) O(n + k)
Radix[s] O(d(n+k)) O(d(n+k))
Bucket[s,p] O(n) O(n2)

Sorting comparisons:

https://www.youtube.com/watch?v=kPRA0W1kECg

