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I Homework 1 posted,
due Sunday Oct. 1

Announcements



| 3 .
| Radix sort

Use a stable sort to sort from the
I least significant digit to most

Psuedo code: (A=Input)
fori=1tod
stable sort of A on digit |
/[l 1.e. use counting sort



Radix sort
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Stable means you can draw lines
without crossing for a single diqgit



5
Radix sort

Run time?



Radix sort

I Run time?
O( (b/r) (n+27) )
b-bits total, r bits per 'digit’
d = b/r digits
Each count sort takes O(n + 2"
runs count sort d times...
O( d(n+2")) = O( b/r (n + 2"))



Radix sort

Run time?

If b <lg(n), ®(n)
it b >1g(n), ®(n lg n)
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I It IS possible to represent
binary trees as an array

Binary tree as array

A=|16|14|‘IO|8|7|9|3|2|4|‘f|

112|3]4|5/6]7/8]9|10




Binary tree as array

Index 'I' Is the parent of '2I' and
21+1"
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I IS It possible to represent
any tree with a constant
branching factor as an array?

Binary tree as array



I IS It possible to represent
any tree with a constant
branching factor as an array?

Binary tree as array

Yes, but the notation IS awkward



I A max heap Is a tree where the
parent Is larger than its children
(A min heap Is the opposite)

Heaps

400




Heapsort

The idea behind heapsort is to:

1. Build a heap

2. Pull out the largest (root)
and re-compile the heap

3. (repeat)



Heapsort

To do this, we will define
subroutines:

I
I
I

1. Max-Heapify = maintains heap

property

2. Build-Max-Heap = make
seguence Into a max-heap



I Input: a root of two max-heaps
I Output: a max-heap

Max-Heapify

é%@ o d®do

.................

max hcap



Max-Heapify

Pseudocode Max-Heapity(A,i):

left = left(i) // 2*i

right = right(1) // 2*i+1

L = arg_max( Alleft], A[right], A[ 1 ])

if (L not 1)
exchange A[ 1 | with A L |
Max-Heapity(A, L)

// now make me do it!



Max-Heapify

Runtime?



I Max-Heapity

Obviously (Is it?): Ig n

Runtime?

T(n) =T(2/3 n) + O(1) // why?
Or...
T(n) =T(1/2 n) + O(1)



Master's theorem

I Master's theorem: (proof 4.6)
I Fora>1,b>1,T(n)=aTm/b) + f(n)

If £(n) is... (3 cases)

O(n°) for c <log, a, T(n) is O(n'"=" ?)
®(n'°e*?), then T(n) is G(n'°¢" 2 1g n)
Q(n°) for ¢ > log a, T(n) is O(f(n))



I Max-Heapity

Obviously (Is it?): Ig n

Runtime?

T(n) =T(2/3 n) + O(1) // why?
Or...
T(n) =T(1/2 n) + O(1) = O(lg n)



I Build-Max-Heap

Next we build a full heap from
I an unsorted sequence

Build-Max-Heap(A)
for 1 = floor( A.length/2 ) to 1
Heapify(A, 1)



I Build-Max-Heap

|
=5 &

o\ [0 0

Red part Is already Heaplified



I Build-Max-Heap

I Correctness:
I Base: Each alone leaf is a
max-heap
Step: If All] to A[n] are In a heap,
then Heapify(A, 1-1) will make
-1 a heap as well
Termination: loop ends at I=1,
which is the root (so all heap)



I Build-Max-Heap

Runtime?



Build-Max-Heap

Runtime?

O(n Ig n) Is obvious, but we can
get a better bound...

Show ceiling(n/2™') nodes at
any height 'h'



Build-Max-Heap
Heapify from height 'nh' takes O(h)

sum,__,9" ceiling(n/2"*) O(h)
=O(n sum__,9" ceiling(h/2"*))
(sum _~ k X = x/(1-x)?, x=1/2)
=0(n 4/2) = O(n)



I Heapsort(A):
I Build-Max-Heap(A)
for 1 = A.length to 2
SwapA| 1] All]
A.heapsize = A.heapsize — 1
Max-Heapify(A, 1)

Heapsort
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Heapsort

Runtime?



Run Max-Heapify O(n) times
So... O(n Ig n)

Heapsort

Runtime?



Priority queues

Heaps can also be used to
Implement priority gueues
(1.e. alrplane boarding lines)

Operations supported are:
Insert, Maximum, Exctract-Max

and Increase-key



I Maximum/(A):
I return A| 1 |

Priority queues

Extract-Max(A):

max = A[1]

All] = A.heapsize

A.heapsize = A.heapsize — 1
Max-Heapify(A, 1), return max



I Increase-key(A, I, key):
| Ali]=key
while (1>1 and A [floor(i/2)] < AJi])
swap Al 1 ], A [floor(i/2)]
| = floor(1/2)

Priority queues

Opposite of Max-Heapify... move
high keys up instead of low down



I Insert(A, key):

I A.heapsize = A.heapsize + 1
A [ A.heapsize| = -=
Increase-key(A, A.heapsize, key)

Priority queues



Maximum =
Extract-Max =
InCrease-Key =
Insert =

Priority queues

Runtime?



Maximum = O(1)
Extract-Max = O(lg n)
Increase-Key = O(lg n)
Insert = O(lg n)

Priority queues

Runtime?



Sorting comparisons:

Name Average Worst-case

I Insertion(s,i] O(n?)
Mergels,p] O(nlg n)
Heap|l] O(n lg n)
Quick|p] O(n lg n)
Counting[s] O(n + k)
Radix|s] O(d(n+k))
Bucket[s,p] O(n)

O(n?)

O(n Ig n)
O(n lg n)
O(n?)

O(n + k)
O(d(n+k))
O(n?)



Sorting comparisons:

https://www. youtube com/watch?v kPRAOWlkECg

I Quick Sort (LR ptrs) - 454 c , 670 array a , 1.00 ms delay http://panthema.net/2013/sound-of-sorting

g




