WY o) b _T_a_—,_ o
Modus ponendo ponens [(p-=q)*p]-> g

If it rains, the road is wet, and it rains, so the road
; ;[S wet.

Using f1r_§t order logic (C 8-9)

hy do we have to listen such crap
? Optimus promised us that we

ould read some good-night stories,
inot this suckmg university book !

I In first order logic, we have objects and
I relations between objects

Review: First order logic

The relations are basically a list of all valid
tuples that satisty the relation

We can also have variables that represent
objects often used in conjunction with
quantitiers: V/ =

I “Everyone in class is sitting in a seat”
“If someone is sitting in a seat it is occupied”
“At least one seat is not occupied”
“No one is sharing a seat”

First order logic

Let's translate English into first order logic:

Objects: People (p1, p2, ...), Chairs (c1, c2, ...)
Relations: InClass(x), InSeaﬁgX,yg\, Occupied(x)
person chair

First order logic

“Everyone in class is sitting in a seat”
Vady InClass(x) = InSeat(z,y)
“If someone is sitting in a seat it is occupied”

Vxdy InSeat(y,x) = Occupied(x)
“At least one seat is not occupied”

dxr —~Occupied(x)
“No one is sharing a seat”

Val, z2dyl,y2 InSeat(zl,yl)

AInSeat(x2,y2) N\ x1 # 22 = yl # y2

First order logic

To express the top left cell for mindsweep in

I propositional logic, we had to write:
P1,1,1AN=-P1,1,.2A-P1,1,3 [1]2

1

A-P1,1,4 A=P1,1,5 A -P1,1,6

NP1, 7TAN—-P1,1,8 N—P1,1, B
How would you write the whole current
knowledge for all 5 cells in first order logic?
(not the game logic, just current state)

Hint: What are objects? Relations?

First order logic

N

I
N =

First order logic:
One(|1,1]) A One((1,2]) A One([1,3]) A Two([2,1]) A Two(|2, 3])
Then we just also need to say that cells

can only have one number/bomb
V[xl, y1], [22,y2], [3, y3]...[29, y9] One([x1,yl]) A Two([x2, y2])
NThree(|x3,y3]) A ... N Eight(|x8,y8]) A Bomb(|x9, y9])
= |x1,yl] # [22,y2] # [x3,y3]| # ... # (29, y9]

I Using First order logic

The rest of chapter 8 is boring, so we will skip
I (though good practice for logic representation)

We will go ahead into Ch. 9 and talk about
how to use first order logic to query against

First we will look at how we can simplify
some of the quantifiers

Universal instantiation

With a universal quantifier, V/, this means you
I can replace it with any object

For example:

Objects = {Sue, Bob, Devin}
Sentence = Vx IsHuman(x)

You can conclude: InHuman(Sue)
AInHuman(Bob)
AInHuman(Devin)

I With an existential quantifier, o, there is some
I object that makes this true...

Existential instantiation

So you give it a name of a new object (that is
equal to an existing object)

Objects = {Spider, Dragon, Pangolin }
Sentence = dx Mammal(x)

You can conclude: M ammal(M1)
where M1 = Spider V M1 = Dragon V M1 = Pangolin

I You can convert first order logic back into
I propositional logic by using instantiation

Convert to propositional logic

Objects = {Tree, Car}
Sentences:Vx Alive(x) = Reproduce(x)

Aliwve(Tree)
Instantiation:

Alive(Tree) = Reproduce(Tree)

Alive(Car) = Reproduce(Car)
Aliwve(Tree)

I Once you have this, you can treat each
I relation/object as a single proposition uniquely

identified by the characters
Alive(Tree) = Reproduce(Tree)

Alive(Car) = Reproduce(Car)

Alive(Tree)
... could turn into:
AT = RT

AC = RC'... and we could use our old
AT techniques to ask information

Convert to propositional logic

I Convert to propositional logic

This explanation glosses over two important
I facts... what?

I Convert to propositional logic

This explanation glosses over two important
I facts... what?

1. Equals
2. Functions

(1) is easier to tackle as you can remove this
when doing instantiation

You simply remove the invalid statements

Remove equality

Removing = after instantiation:
Object={A,B}
Sentence:Vx,y x # y = Dif ferent(x,y)

.. AF* A= Different(A, A)

Instantiation: N + B = Dif ferent(A, B)

B # A= Different(B,A)

/B #+ B = Dif ferent(B, B)
Remove 1rue = Different(A, B)
conflicts: True = Dif ferent(B, A)

I I have skimmed on functions, but similar to
I math functions they can be applied repeatedly

Converting functions

Define: PlusPlus(x): ©+ — x + 1
PlusPlus(1) = 2
PlusPlus(PlusPlus(1)) = 3

... and so on (no limit to number of functions)

When converting to prop. logic, you have to
apply functions everywhere possible...

I This means the propositional logic conversion
I might have an infinite number of propositions

Converting functions

A theorem shows you only need a finite
number of function calls to decide entailment

Step 1: See if entailed with no functions
Step 2: See if entailed with 1 function call

Step 3: See if entailed with 2 function calls
Step 4. ...

I At some finite step, if entailment is possible
I it will be found

Converting functions

Unfortunately, how many is unknown so
it is impossible to find if something is not
entailed in the propositional logic

(this is semi-decidable)

Even without functions if there are p k-ary
relations with n objects, you get: O(p*n/\k)

Unification

A unification is a substitution for variables
I that creates a valid sentence by specifying
a map between variables and objects

For example, consider:
Objects = {Sue, Alex, Devin}

Va,y Sibling(x,y) = Sibling(y, x)
Sibling(Sue, Devin)
—Sibling(Devin, Alex)

What variables can we unify/substitute?

I Objects = {Sue, Alex, Devin}
Va,y Sibling(x,y) = Sibling(y,)
Sibling(Sue, Devin)
—Sibling(Devin, Alex)
First sentence is the only one with variables,
there are 9 options (only 6 if X # y)

Unification

One unification is {x/Sue, y/Devin}

We cannot say {x/Devin, y/Alex}, as this is
creates a contradiction

I Objects = {Sue, Alex, Devin}
Va,y Sibling(x,y) = Sibling(y,)
Sibling(Sue, Devin)
—Sibling(Devin, Alex)
First sentence is the only one with variables,
there are 9 options (only 6 if X # y)

Unification

One unification is {x/Sue, y/Devin}

We cannot say {x/Devin, y/Alex}, as this is
creates a contradiction

I We do not need to convert to propositional
I logic to use some rules of reasoning

General modus ponens

Modus ponens can be applied even if there

are variables, as long as we can unify them:
Vx Large(x) A Alive(x) = Dangerous(x)
Ve Alive(x)

Large(Hippo)

We can unify the top sentence with {x/Hippo},
so we can conclude: Dangerous(Hippo)

General modus ponens

I If you want to use this general modus ponens,
I finding the unification can be expensive

You basically need to try all substitutions,
though you can store your data in smart ways
to make look-up much more quickly

Using just general modus ponens, you can do
basic inference with first order logic
(what is the problem??)

I General modus ponens

Objects = {Cat, Dog, Frog, Rat, Sally, Jane}
I dx Zodiac(x)
vV Alive(x) = Birthday(z)
Vo Alive(x) = Fats(x)
Va,y Birthday(x) = Party(x,y)
Vo Zodiac(x) N\ Birthday(x) = Happy(x)
Alive(Sally)

Is Sally happy?
How about Party(Sally, Frog)?

General modus ponens

We can substitute {x/Sally} here with MP:
Vx Alive(x) = Birthday(x)

To get: Birthday(Sally)
Then sub. {x/Sally, y/Frog} with MP here:
Va,y Birthday(x) = Party(x,y)

To get: Party(Sally, Frog)

However, we cannot tell if Sally is happy,
as we cannot unify: Zodiac(s1)

Birthday(Sally)

I You try!
Vo Meat(x) A Make(Bread, z, Bread) = Sandwich(Bread)

Ve, y OnGrill(z,y) A Sandwich(y) = Grilled(y)
Ve, y OnGrill(z,y) A Meat(y) = Grilled(y)

dr Meat(x)

Ve, y OnGrill(z, y)

Ve, y, 2 Make(z,y, 2)

Bread
Can you get Grilled(Bread)?

How about Grilled(Chicken)?

General modus ponens

I You try!
Vo Meat(x) A Make(Bread, z, Bread) = Sandwich(Bread)

Ve, y OnGrill(z,y) A Sandwich(y) = Grilled(y)
Ve, y OnGrill(z,y) A Meat(y) = Grilled(y)

dr Meat(x)

Ve, y OnGrill(z, y)

Ve, y, 2 Make(z,y, 2)

Bread
Can you get Grilled(Bread)? Yes

How about Grilled(Chicken)? No

General modus ponens

