
Using first order logic (Ch. 8-9)



Review: First order logic

In first order logic, we have objects and
relations between objects

The relations are basically a list of all valid
tuples that satisfy the relation

We can also have variables that represent
objects often used in conjunction with
quantifiers: 



First order logic

Let's translate English into first order logic:

“Everyone in class is sitting in a seat”
“If someone is sitting in a seat it is occupied”
“At least one seat is not occupied”
“No one is sharing a seat”

Objects: People (p1, p2, ...), Chairs (c1, c2, ...)
Relations: InClass(x), InSeat(x,y), Occupied(x)

person chair



First order logic

“Everyone in class is sitting in a seat”

“If someone is sitting in a seat it is occupied”

“At least one seat is not occupied”

“No one is sharing a seat”



First order logic

To express the top left cell for mindsweep in
propositional logic, we had to write:

How would you write the whole current
knowledge for all 5 cells in first order logic?
(not the game logic, just current state) 

Hint: What are objects?  Relations?



First order logic

First order logic:

Then we just also need to say that cells
can only have one number/bomb 



Using First order logic

The rest of chapter 8 is boring, so we will skip
(though good practice for logic representation)

We will go ahead into Ch. 9 and talk about
how to use first order logic to query against

First we will look at how we can simplify
some of the quantifiers



Universal instantiation

With a universal quantifier,    , this means you
can replace it with any object

For example:
Objects = {Sue, Bob, Devin}
Sentence = 

You can conclude:



Existential instantiation

With an existential quantifier,    , there is some
object that makes this true...

So you give it a name of a new object (that is
equal to an existing object)

Objects = {Spider, Dragon, Pangolin}
Sentence = 
You can conclude:
where



Convert to propositional logic

You can convert first order logic back into
propositional logic by using instantiation

Objects = {Tree, Car}
Sentences: 

Instantiation:



Convert to propositional logic

Once you have this, you can treat each
relation/object as a single proposition uniquely
identified by the characters

... could turn into:

... and we could use our old
techniques to ask information



Convert to propositional logic

This explanation glosses over two important
facts... what?



Convert to propositional logic

This explanation glosses over two important
facts... what?

1.  Equals
2.  Functions

(1) is easier to tackle as you can remove this
when doing instantiation

You simply remove the invalid statements



Remove equality

Removing = after instantiation:
Object={A,B}
Sentence:

Instantiation:

Remove
conflicts:



Converting functions

I have skimmed on functions, but similar to 
math functions they can be applied repeatedly

Define: PlusPlus(x):
PlusPlus(1) = 2
PlusPlus(PlusPlus(1)) = 3
... and so on (no limit to number of functions)

When converting to prop. logic, you have to
apply functions everywhere possible...



Converting functions

This means the propositional logic conversion
might have an infinite number of propositions

A theorem shows you only need a finite 
number of function calls to decide entailment

Step 1: See if entailed with no functions
Step 2: See if entailed with 1 function call
Step 3: See if entailed with 2 function calls
Step 4: ...



Converting functions

At some finite step, if entailment is possible
it will be found

Unfortunately, how many is unknown so
it is impossible to find if something is not
entailed in the propositional logic
(this is semi-decidable)

Even without functions if there are p k-ary
relations with n objects, you get: O(p*n^k)



Unification

A unification is a substitution for variables
that creates a valid sentence by specifying
a map between variables and objects

For example, consider:

What variables can we unify/substitute?



Unification

First sentence is the only one with variables,
there are 9 options (only 6 if x ≠ y)

One unification is {x/Sue, y/Devin}
We cannot say {x/Devin, y/Alex}, as this is
creates a contradiction



Unification

First sentence is the only one with variables,
there are 9 options (only 6 if x ≠ y)

One unification is {x/Sue, y/Devin}
We cannot say {x/Devin, y/Alex}, as this is
creates a contradiction



General modus ponens

We do not need to convert to propositional
logic to use some rules of reasoning

Modus ponens can be applied even if there 
are variables, as long as we can unify them:

We can unify the top sentence with {x/Hippo},
so we can conclude: 



General modus ponens

If you want to use this general modus ponens, 
finding the unification can be expensive 

You basically need to try all substitutions,
though you can store your data in smart ways
to make look-up much more quickly

Using just general modus ponens, you can do
basic inference with first order logic
(what is the problem??)



General modus ponens

Objects = {Cat, Dog, Frog, Rat, Sally, Jane}

Is Sally happy?
How about Party(Sally, Frog)?



General modus ponens

We can substitute {x/Sally} here with MP:

To get:
Then sub. {x/Sally, y/Frog} with MP here:

To get:

However, we cannot tell if Sally is happy,
as we cannot unify: 



General modus ponens

You try!

Can you get Grilled(Bread)?
How about Grilled(Chicken)? 



General modus ponens

You try!

Can you get Grilled(Bread)?  Yes
How about Grilled(Chicken)? No


