
Propositional logic (Ch. 7)



Announcements

HW 3 due Sunday



Representing knowledge

So far we have looked at algorithms to find
goals via search, where we are provided with
all the knowledge and possibly a heuristic

With CSP we saw how to apply inference to
rules to find the goal

Now we will expand more on that and fully
represent a knowledge base that we can
query and infer proper action from



Representing knowledge

The basic commands the knowledge base
needs to have are:

1. Ask() = tells best action
2. Tell() = add information/knowledge to the 

knowledge base

This new knowledge might be from
observations of the environment or from
learned rules of the environment



Representing knowledge

There are two ways you can inform agents
about the rules of the game:

1. Declarative = use Tell() to inform the agent
of all the rules one by one

2. Procedural = code in the fundamental rules
and desired behaviors

Typically, there is a mix of both approaches



Representing knowledge

We will follow this general outline:

1. Tell(observations)
2. action = Ask(action options)
3. Tell(picked action)
4. Repeat...

Step 2 can be quite involved and the computer
will reason over all of its knowledge



Logic

Minesweep?

http://minesweeperonline.com/
Write down any “deductions/rules” you find!



Logic

One example of a simple rule:
The 1 in corner marks 
flag as a mine

Another rule:
The two can mark the two outer mines
if flanked by ones

safe

http://minesweeperonline.com/


Logic

The goal is to simply tell the computer about
the rules of the game

Then based on what it sees as it plays, it will
automatically realize these “safe plays”

This type of reasoning is important in partially
observable environments as the agent must
often reason on new information



Logic: definitions

A symbol represents a part of the environment 
(e.g. a minesweep symbol might be if a cell 
has a mine or not), like math variables

Each single piece of the knowledge base is a
sentence involving at least one symbol

A model is a possible assignment of symbols,
a “possible outcome” of the environment



Logic: definitions

In propositional logic, a symbol is either true
or false (as it represents a proposal of a 
“variable”)

If “m” is a model and is “α” a sentence, 
m satisfies α means α is true in m (also said
as “m models α”)

Let M(α) be all models of α



Logic: example

For example, consider a 3x3 minesweep:

After the first play we have:

Let us define P2,3,2 as the proposition that
row 2, column 3 cell has value 2

After playing the first move, we add to the
knowledge base that this proposition is true
(this representation has 10^9 states)



Logic: example

Here is one model for the unobserved parts:

This model does not satisfy our proposition
P2,3,2 as there are only two mines adjacent to
row 2, column 3 cell

This means the model does not represent our
knowledge base 



Logic: entailment

We say α entails β (α╞ β) if and only if every
model with α true, β is also true

Another definition (mathy):
α╞ β if and only if M(α) subset M(β)

This means there are fewer models true
with proposition α than β



Logic: entailment

Consider this example:
There are two valid configurations based on
our knowledge base:

If we let α = mine at (2,2), then in isolation this
can mean:

We can see that M(above) subset M(α(below)) 



Logic: entailment

However, if we let β = mine at (2,3), we get:

M(knowledge base (KB)) is (again):

This is not entailment, as this is not in M(β),
thus KB╞ β  (in other words “from the KB,
you cannot conclude (2,3) is a mine”)



Logic: model checking

Entailment can generate new sentences for our 
knowledge base(i.e. can add “mine at (2,2)”)

Model checking is when we write out all the
actual models (as I did in the last example)
then directly check entailment

Although this is exponential, this is true for 
this type of problem (although some are much
worse exponential than others)



Logic: model checking

Model checking is...
1. Preserves truth through inference
2. complete, meaning it can derive any 

sentence that is entailed (and in finite time)

The “complete” is important as some 
environments have an infinite number of
possible sentences



Logic syntax

In our logic, we allow 5 operations:
  = logical negation (i.e. “not” T = F)
  = AND operation
  = OR operation (Note: not XOR)

 = “implies” operation
= “if and only if” operation (iff)

The order of operations (wihout parenthesis)
is top to bottom



Logic syntax

We mentioned a symbol is P1,3,2 but a literal
is either P1,3,2 or ┐P1,3,2

Two notes:
OR is not XOR (exclusive or), which is not the
English “or”  (e.g. ordering food)

“implies” only provides information if left
hand side is right (e.g. F = cats can fly, B = cats
are birds:  F implies B is true...)



Logic syntax

Here are the truth tables:

And equivalent laws:



Check model

We can make use model checking to make
an inference algorithm, much the same way
we modified DFS to do backtracking search

1. Enumerate possibilities on a symbol (repeat)
2. Once all symbols are assigned, check if

consistent, if not return false (all the way up
tree due to recursive call)



Check model

Example: suppose our KB is “P implies Q”
We want to check α = “not P” 
Enumerate P: {P = true}, {P = false}
Enumerate Q: {P=T,Q=T}, {P=T,Q=F},
{P=F,Q=T}, {P=F,Q=F}

Consistent?

No! (top row) 
“not P” is false when “P implies Q” is true

P Q not P P → Q

T T F T

T F F F

F T T T

F F T T


