
File input
Ch 6



Recap: File I/O

File I/O is basically the same as cout/cin
except to a file and not terminal

Why use?
1. Files exist until deleted, terminal exists

until program stops (i.e. grades no go away)
2. Easier to get info in/out of program

(remember temperature lab problem?)
3. Can store hard computation for fast look-up



Writing to a file

Before:

cin cout

out
(ofstream)Guess what happens next?



Writing to a file

Before:

cin cout

out
(ofstream)

in
(ifstream)



File input

Input is similar to output, we need to open a 
stream then use it similar to cin

What is a major difference between reading
and writing to a file?

(See: fileInBasics.cpp)



End of file (EOF)

When there is nothing left in a file to read,
we call it end of file

C++ is fairly nice about handling EOF, 
and you can detect it in 3 ways:

reads from file

does not read from file (just tells if at end)



End of file (EOF)

Reading from file can be a bit tricky as the 
end of file is not detected until you try to read
but then fail because there is nothing there

This can cause issues with counting the last
input twice

To avoid this, make sure you right after 
“in >> var” you check if EOF
(see: fileInput.cpp)



Formatting

You can use also use setf() on your streams,
but you can also use setw() and setprecision()
from <iomanip>

setw(x) reserves x spaces (right justify)

(See readTable.cpp)


	Slide 1
	Slide 2
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

