
Classes
Ch 10.1 - 10.3

Highlights

- public/private - operator overloading
- constructor

- friend functions

class vs array

Arrays group together
similar data types
(any amount you want)

Classes (and structs)
group together
dissimilar types that are
logically similar

class

A class is a new type that you create
(much like int, double, ...)

Blueprint
for all objectsAn instance of

date class

Another instance

public vs private

public vs private

public vs private

Creating interfaces with public allows users
to not worry
about the private
implementation

So... more work
for you
(programmer)
less work for
everyone else

public vs private

The public keyword allows anyone
anywhere to access the variable/method

The private keyword only allows access
by/in the class where the variable/method
is defined
(i.e. only variables of this type can access
this within itself)

public vs private

All variables should be private

While this means you need methods to set
variables, users do not need to know how
the class works

This allows an easier interface for the user
(also easier to modify/update code)

(See: datePrivate.cpp)

public vs private

The idea is: if the stuff underneath changes,
it will not effect how you use it

For example, you change from a normal
engine to a hybrid engine... but you still
fill it up the same way

public vs private

An important point: private just means only
“date” things can modify the private variables
of a “date” object

However, two different “date” objects can
access each other's privates

(see: privateDates.cpp)

Constructors

The date class has two functions: setDate()
and print()

As we need to run setDate() on a variable
before it is useful anyways

In fact, such a thing exists and is called
a constructor (run every time you create
a variable)

Constructors

The class name and the constructor must
be identical
(constructors also have no return type)

(See: dateConstructor.cpp)

Constructors

If you don't put a constructor, C++ will make
a default constructor for you (no arguments)

To use the default constructor say this:
 or ...
... not this:

default constructor

Constructors

If you declared constructors you must use
one of those

Only if you declare no constructors, does
C++ make one for you (the default)

Note: our dateConstructor.cpp has no way
to change the value of the date after
it is created
(thus gives control over how to use class)

TL;DR Constructors

Constructors are functions, but with a few
special properties:

(1) They have no return type
(2) They must have the same name as the

class they are constructing
(3) If you want to make an instance of a class

you MUST run a constructor
(and if you ever run a constructor, you
are making an object)

#include

Just as writing very long main() functions
can start to get confusing...

... writing very long .cpp files can also get
confusing

Classes are a good way to split up code
among different files

#include

You can #include your class back in at the top
or link to it at compile time

You have to be careful as #include basically
copies/pastes text for you

Will not compile if class declared twice
(used in two different classes you #include)

#include

date.cpp date.hpp runDate.cpp
#include #include

Then compile with: g++ runDate.cpp date.cpp

#include

To get around this, you can use compiler
commands in your file

This ensures you only
have declarations once
(See: dateClass.hpp,
dateClass.cpp,
runDate.cpp)

“if not defined”
“define”

Operator Overload
Ch 11.1

Basic point class

Suppose we wanted to make a simple class
to represent an (x,y) coordinate point

(See: pointClass.cpp)

Basic point class

Now let's extend the class and make a function
that can add two (x,y) coordinates together
(like vectors)

With two ints?

With another point?

(See: pointClassAdd.cpp)

Operator overloading

We can overload the + operator to allow easy
addition of points

This is nothing more than a “fancy” function

(See: pointOverload.cpp)

Operator overloading

When overload operators in this fashion,
the computer will convert a statement such as:

... into ...

... where the left side of the operator is the
“calling” class and the right side is a argument

function!

Operator overloading

You cannot change the number of parts to an
operator ('+' only gets 2, '!' only gets 1)

Cannot create “new” operators
(can only overload existing ones)

Cannot change order of precedence
('*' is always before '+')

Operator '=' is special... save for later

Terrible units

Let's make a class that stores people's heights
using the terrible imperial units!

(see: heights.cpp)

Terrible units

Write the following operators to compare
two different heights:

<
==
>

(see: heightsCompare.cpp)

Operator overloading

Long list of operators you can overload:

() // this is normal overloading
+, -, *, /, %
!, <, >, ==, !=, <=, >=, ||, &&
// should be able to do anything above here
<<, >>, []
=, +=, -=, *=, /=, %=, ++ (before/after), --(b/a)
^, &, |, ~, (comma), ->*, ->
^=, &=, |=, <<=, >>=

Operator overloading

Functions define a general procedure (or code
block) to run on some inputs

Constructors are nothing but “special”
functions that initialize class variables

Operator overloading is a special function
that is disguised as a symbol

Friend functions
Ch 11.2

Review: private

Notice this line:

Which runs...

This means putin is accessing barak's privates!

Private only means things NOT associated
with the class (such as main) cannot use
or access these variables/functions

putin's feet barak's feet

friend functions

You can give a non-class function access to
private variables by making it a friend

A friend function is not inside the class, but
does have access to its private variables
(friends don't mind sharing)

This allows you to give exceptions to the
private rule for specific functions

friend functions

Instead of declaring a friend function at the
top, do it inside the class:

The function description/implementation is
identical to as if it was a non-friend:

(See: pointFriends.cpp)

friend functions

How would you overload the << operator?
Would you use a friend?
What do you return?

Hint: cout is type “ostream”
Hint2: use call-by-reference

(See: pointFriendsOverload.cpp)

friend functions

How would you overload the << operator?
Would you use a friend?

Yes, so you can put cout first
What do you return?

ostream& so you can cout multiple things

How would cin work?
Any other case of when you can think you
would need a friend with the point class?

friend functions

When would you want to use friend functions?

1. Typically when we want to involve two
separate classes

(see: multiplePrivates.cpp)

2. When we care about the order of things...
(as normal overloading needs your class to
come first)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	public priavte
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	constructor
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 35
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

