
Pointers and memory
Ch 9, 11.4, 13.1 & Appendix F

Highlights

- dynamic arrays

Person class

The ability to have non-named boxes allows
you to more easily initialize pointers

(See: personV3.cpp)

Pointer to pointer

You can have multiple stars next to types:

Each star indicates how many arrows you
need to follow before you find the variable

int*** int** int* int

x

8

(See: pointerPointers.cpp)

What pointers can/cannot do

Pointers CAN do Pointers CANNOT do

nullptr

When you type this, what is ptr pointing at?

Answer: nullptr (or NULL)

nullptr

The null pointer is useful to indicate that you
are not yet pointing at anything

However, if you try to de-reference it (use *),
you will seg fault

Do not try to ask
the computer
to go here

(see: nullptr.cpp)

Multiple deletes

Every new should have one corresponding
delete command (one for one always)

The delete command gives the memory where
a variable is pointing back to the computer

However, the computer will get angry if you
try to give it places you do not own (i.e. twice)

Dynamic arrays

One of the downsides of arrays, is that we
needed to have a fixed size

To get around this we have been making them
huge and only using a part of it:

Then we need to keep track of how much
of the array we are currently using

Dynamic arrays

Arrays are memory addresses (if you pass
them into function you can modify original)

So we can actually make a dynamic array
in a very similar fashion

(this memory spot better to store large stuff)

Dynamic arrays

One important difference to normal pointers

When you delete an array you must do:

If you do the normal one, you will only delete
a single index (list[0]) and not the whole thing

(See: dynamicArrays.cpp)

need empty
square brackets

Functions & pointers

Another issues with arrays is that we could
not return them from functions

Since arrays are memory addresses, we would
only return a pointer to a local array

However, before this local array would just
fall out of scope, but no more as dynamic
memory stays until you manually delete it
(See: returnArrays.cpp)

Dynamic 2D arrays

Since pointers can act like arrays...
(i.e. int* acts like int [])

... int** can act like a two dimensional array

But need to use new to create each column
individually (but can change the size of them)

When deleting, same structure but backwards
(delete each column, then rows)

Dynamic 2D arrays

(See: raggedArray.cpp)

Dynamic 2D arrays

(See: raggedArray.cpp)

Reasons why pointer

Why use pointers?

1. Want to share variables (multiple names
for the same box)

2. Dynamic sized arrays
3. Return arrays from functions (or any case of

keep variable after scope ends)
(DOWN WITH GLOBAL VARIABLES)

4. Store classes within themselves
5. Automatically initialize the number 4 above

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

