
CSci 2021, Fall 2018 Written Exercise Set 4 Solutions

Problem 1: (This problem is closely related to O’Hallaron 6.26)
The bits must add up to m = t + s + b, and the cache size must be S = C ∗ B ∗ E. Cache 1 is
fully associative, hence S = 1 and s = 0.

Cache m C B E S t s b
1. 32 1024 16 1 64 22 6 4
2. 32 4096 512 8 1 23 0 9
3. 32 2048 8 2 128 22 7 3
4. 64 8192 256 1 32 51 5 8

Problem 2: (This problem is closely related to O’Hallaron 6.29)
There are 2 set index and 2 byte offset bits each. The remaining bits are for the tag.

T T T T T T T T I I O O
11 10 9 8 7 6 5 4 3 2 1 0

Using the above format we can extract the bits identifying the tag, set index, and line offset. With
these we can identify the cache line and inspec the tags and valid bits to determine if there was a hit.

ADDR T I O Effect
0xFD2 FD 0 2 Hit, read byte 2 0x13
0x3F7 3F 1 3 Miss, tag found but invalid
0x2FC 2F 3 0 Hit, read byte 0 0x5C
0x63A 63 2 2 Miss, tag found but invalid

Problem 3: (This problem is closely related to O’Hallaron 6.37)

First see that C = 16KB = 16 ∗ 1024 = 214 and S = C/(E ∗B) = 214/(2 ∗ 25) = 28. Thus
the 2-way cache has 8 s bits and 5 b bits.

sumA is straightforward, every cache fetch will load B/sizeof(double) = 32/8 = 4
columns into the cache block. We read each address in row-major order and don’t re-read any
addresses. Then for every read that misses, the next three reads will hit. miss rate = 1/4.

sumB is complicated by a stride-2 and column-major order access pattern. For an iteration of
j, four columns will be cached but we only read two of them ((i, j) and (i, j + 1)). The critical
question is: will the other two columns ((j + 2) and (j + 3)) be read before that cache line gets
evicted? The following table shows the memory access pattern. The address is computed in the
usual way: ADDR = (128 ∗ 8) ∗ row + 8 ∗ col = 0x400 ∗ row + 0x8 ∗ col.

1



row col ADDR t s b m
0 0 0x8000000 0x4000 0x00 0x0 * (Set 0 Line 1 Filled)
0 1 0x8000008 0x4000 0x00 0x8
1 0 0x8000400 0x4000 0x20 0x0 *
1 1 0x8000408 0x4000 0x20 0x8
2 0 0x8000800 0x4000 0x40 0x0 *
2 1 0x8000808 0x4000 0x40 0x0
...

...
8 0 0x8002000 0x4001 0x00 0x0 * (Set 0 Line 2 Filled)
8 1 0x8002008 0x4001 0x00 0x0
...

...
16 0 0x8004008 0x4002 0x00 0x0 * (Set 0 Line 1 evicted)
16 1 0x8004008 0x4002 0x00 0x0
...

...
We see that when we increment the row, the element address maps to a set 0x20 past the last row.
But, we only have 28 − 1 = 0xFF sets. When our next element address increments the set number
past 0xFF, the tag will increment and the set will reset to 0. You can see that this will happen
every 8 rows. At this point the tag will be different than the current resident of the cache set and
the second line will be filled. However, when this wrapping happens a second time, the ways for
the set will be full, and a block must be evicted. Assuming an LRU strategy, the first line will be
evicted. Thus at iteration j+2, the (i, j+2) read will be a cache miss. After the fetch the (i, j+3)
read will hit. So far we’ve reasoned for an (i, j) pair, half of the reads will be misses. miss rate =
1/2

sumC also uses a stride-2 pattern and reads in row-major order. Unlike sumB, the line fetched
for an (i, j) pair will still be intact by the time the loop gets around to reading the last two columns.
This is evident from the memory access pattern table:

row col ADDR t s b m
0 0 0x8000000 0x4000 0x00 0x0 * (Set0 Line 1 Filled)
1 0 0x8000400 0x4000 0x20 0x0 * (Set1 Line 1 Filled)
0 1 0x8000008 0x4000 0x00 0x8
1 1 0x8000408 0x4000 0x20 0x8
0 2 0x8000010 0x4000 0x00 0x8
1 2 0x8000410 0x4000 0x20 0x8
0 3 0x8000018 0x4000 0x00 0x8
1 3 0x8000418 0x4000 0x20 0x8
0 4 0x8000020 0x4000 0x01 0x8 * (Set0 Line 2 Filled)
1 4 0x8000420 0x4000 0x21 0x8 * (Set1 Line 2 Filled)
...

...
Thus we reason again that for every missed read we have three 3 hit reads. miss rate = 1/4

Problem 4:(This problem is closely related to O’Hallaron 6.38)

The direct-map cache has 4 s bits and 3 b bits. The 4-way cache has 3 s bits and 2 b bits.
The reasoning is simplified by the fact that if the first write to a pixel is a cache miss, then the
subsequent writes to the same pixel will be cache hits. This gives a worst case 1/4 write miss rate.

A. Every time we miss on a pixel write we fetch both the pixel and its successor because the block

2



size 8 bytes holds two pixels. Since we write the pixels in the order of allocation, we miss one write
every other pixel. Since there are four writes per pixel, we have one cache miss per eight writes.
miss rate = 1/8

B. Since each 4-way cacheline only holds one pixel, and we never write the same pixel twice, ev-
ery new pixel write must be a miss. Since there are four writes per pixel, we get one miss per four
writes. miss rate = 1/4

C. This code demonstrates the effect of thrashing. Every other pixel address we visit maps to the
same cache line but has a different tag. Thus we get a miss on every pixel. miss rate = 1/4

D. For any i, the pixels loaded by j = {0, 1, 2, 3} will each result in a miss. But, since we revisit
these same memory addresses when j = {4, ..., 15} we get cache hits for all writes. Thus for each
row i there will be 16 ∗ 4 = 64 writes and only 4 of them will be misses. miss rate = 1/16 The
table illustrates the memory access pattern.

Direct-Map 4-Way
j%4 i ADDR t s b m t s b m

0 0 0x00 0 0 0 * 0 0 0 *
1 0 0x40 0 4 0 * 0 2 0 *
2 0 0x80 1 0 0 * 0 4 0 *
3 0 0xc0 1 4 0 * 0 8 0 *
0 0 0x00 0 0 0 * 0 0 0
1 0 0x40 0 4 0 * 0 2 0
2 0 0x80 1 0 0 * 0 4 0
3 0 0xc0 1 4 0 * 0 8 0
...

...
...

3


