Linking

CSci 2021: Machine Architecture and Organization
December 7th-10th, 2018
Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O’Hallaron

v , Comp e pective, Third Edition

Example C Program

Today

m Linking
[

int sum(int *a, int n); int sum(int *a, int n)
{
int array[2] = {1, 2}; inti,s=0;
int main() for (i=0;i<n;i++){
{ s +=ali];
int val = sum(array, 2); }
return val; return s;
}
main.c

sum.c

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Why Linkers?

m Reason 1: Modularity

= Program can be written as a collection of smaller source files,
rather than one monolithic mass.

= Can build libraries of common functions (more on this later)
= e.g., Math library, standard C library

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

P pective, Third Edition

Static Linking

m Programs are translated and linked using a compiler driver:
® linux> gcc -0g -0 prog main.c sum.c

®" linux> ./prog

main.c sum.c Source files
Translators Translators
(cpp, ccl, as) (cpp, ccl, as)
ma!m o suL o Separately compiled
l 1 relocatable object files
[Linker (Id) |

l Fully linked executable object file
PXOG (contains code and data for all functions
defined in main.c and sum.c)

 Comp B pective, Third Edition

Why Linkers? (cont)

m Reason 2: Efficiency

= Time: Separate compilation
= Change one source file, compile, and then relink.
= No need to recompile other source files.

= Space: Libraries
= Common functions can be aggregated into a single file...

= Yet executable files and running memory images contain only
code for the functions they actually use.

« grammer's Perspective, Third Edition

What Do Linkers Do?
m Step 1: Symbol resolution

= Programs define and reference symbols (global variables and functions):
= void swap() {..} /* define symbol swap */
= swap(); /* reference symbol swap */
= int *xp = &x; /* define symbol xp, reference x */

= Symbol definitions are stored in object file (by assembler) in symbol table.
= Symbol table is an array of structs
= Each entry includes name, size, and location of symbol.

= During symbol resolution step, the linker associates each symbol reference
with exactly one symbol definition.

v , Comp e pective, Third Edition 7

Three Kinds of Object Files (Modules)

m Relocatable object file (. o file)

= Contains code and data in a form that can be combined with other
relocatable object files to form executable object file.
= Each . ofile is produced from exactly one source (. c) file

m Executable object file (a . out file)

= Contains code and data in a form that can be copied directly into
memory and then executed.

m Shared object file (. so file)

= Special type of relocatable object file that can be loaded into
memory and linked dynamically, at either load time or run-time.

= Called Dynamic Link Libraries (DLLs) by Windows

v .G e pective, Third Edition 9

ELF Object File Format

m Elf header
= Word size, byte ordering, file type (.o, exec, 0
.s0), machine type, etc. ELF header
m Segment header table Segment header table
= Page size, virtual addresses memory segments (required for executables)
(sections), segment sizes. . text section
m . textsection .rodata section
" Code .data section
m .rodata section .bss section
= Read only data: jump tables,symtab section
m .data section .rel.txt section
= |nitialized global variables Nrelldatalsection
m .bsssection .debug section
= Uninitialized global variables
= “Block Started by Symbol” Section header table
= “Better Save Space”

.))
sanand orvamon e SHON. Nieader byt occuples,no space "

What Do Linkers Do? (cont)
m Step 2: Relocation
= Merges separate code and data sections into single sections

= Relocates symbols from their relative locations in the . o files to
their final absolute memory locations in the executable.

= Updates all references to these symbols to reflect their new
positions.

Let’s look at these two steps in more detail....

o pective, Third Edition 8

Executable and Linkable Format (ELF)

m Standard binary format for object files

m One unified format for
= Relocatable object files (. o),
= Executable object files (a.out)
= Shared object files (. so)

m Generic name: ELF binaries

, Comp z pective, Third Edition 10

ELF Object File Format (cont.)

m .symtab section
® Symbol table ELF header
= Procedure and static variable names
= Section names and locations

Segment header table
(required for executables)

m .rel.textsection
= Relocation info for . text section

= Addresses of instructions that will need to be
modified in the executable .data section

= Instructions for modifying.

. text section

. rodatasection

.bss section

m .rel.datasection
= Relocation info for .data section

= Addresses of pointer data that will need to be -rel.txt section
modified in the merged executable

.symtab section

.rel.data section

m .debug section

.debug section
= Info for symbolic debugging (gcc -g)

m Section header table Sectciheadegiabls

= Offsets and sizes of each section

« grammer's Perspective, Third Edition 2

Linker Symbols

m Global symbols
= Symbols defined by module m that can be referenced by other modules.
= E.g.:non-staticC functions and non-static global variables.

m External symbols

= Global symbols that are referenced by module m but defined by some
other module.

m Local symbols
= Symbols that are defined and referenced exclusively by module m.

® E.g.: Cfunctions and global variables defined with the static
attribute.

= Local linker symbols are not local program variables

v , Comp er pective, Third Edition 1

Local Symbols

m Local non-static C variables vs. local static C variables
= |ocal non-static C variables: stored on the stack
= |ocal static C variables: stored in either .bss, or .data

int)

static int x = 0;

X Compiler allocates space in .data for
return x;

} each definition of x
int g() Creates local symbols in the symbol
table with unique names, e.g., x.1
static int x = 1; and x.2.
return x;

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 1%

Linker’s Symbol Rules

= Rule 1: Multiple strong symbols are not allowed
= Each item can be defined only once
= Otherwise: Linker error

m Rule 2: Given a strong symbol and multiple weak symbols,
choose the strong symbol
= References to the weak symbol resolve to the strong symbol

m Rule 3: If there are multiple weak symbols, pick an arbitrary
one
® Can override this with gcec —fno-common

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 18

Step 1: Symbol Resolution

Referencing
a global...
..that’s defined here

int sum(int*a, int n); int sum(int *a, int n)
{

int array[2] = {1, 2}; nt i, s = 0;
int main() ¢ 1 < n; i++) {
{ il

t val = sum(array, 2);

eturn val;
} main.c } sum.c

7
Defining \
a global Referencing Linker knows
Linker knows aglobal... nothingofi or s
nothing of val ...that’s defined here

o pective, Third Edition 15

How Linker Resolves Duplicate Symbol
Definitions

m Program symbols are either strong or weak
= Strong: procedures and initialized globals
= Weak: uninitialized globals

pl.c p2.c

strong —| int foo=5; int foo; |[«—— weak

strong ————|P1() { P2() { |+ strong
} }

 Comp z pective, Third Edition 17

Linker Puzzles

Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

int x; double x; N - A 8
S e p20) {} W‘rltes to x in p2 might overwrite y!
P10 {} Evil!

int x=7; double x; Writes to x in p2 will overwrite y!
int y=5; p2() {} Nasty!

P1() {} Y

References to x will refer to the same initialized
variable.

: two identical weak structs, iled by different il
with different alignment rules.
c

grammer's Perspective, Third Edition 19

Global Variables

m Avoid if you can

m Otherwise

= Use static ifyoucan
= |nitialize if you define a global variable

® Use externify

ou reference an external global variable

pective, Third Edition

Relocation Entries

int array[2] ={1, 2};
int main()

int val = sum(array, 2);
return val;

main.c

Step 2: Relocation

Relocatable Object Files Executable Object File

0000000000000000 <main>:
0: 48 83 ec 08
4: be 02 00 00 00
Oe bf 00 00 00 00

e: e8 00 00 00 00

13: 48 83 c4 08
17: c3

sub $0x8,%rsp

mov $0x2,%esi

mov $0x0, %edi
a: R X86_64_32 array

* 2

callq 13 <main+0x13> # sum()

%edi

= sarray

Relocation entry

£: R _X86_64_PC32 sum-0x4 # Relocation entry

add $0x8,%rsp
retq

main.o

System code - text 0
- Headers
System data : System code
\ main ()
. .text
main.o
swap ()
main () . text
d
int array[2]={1,2} .data More system code
sum.o System data _data
/ int array[2]={1,2}
.symtab
.debug
P pective, Third Edition 2
Relocated .text section
00000000004004d0 <main>:
400440: 48 83 ec 08 sub $0x8, $rsp
40044d4: be 02 00 00 00 mov $0x2, %esi
400449: bf 18 10 60 00 mov $0x601018,%edi # %edi = sarray
4004de: e8 05 00 00 00 callg 4004e8 <sum> # sum()
4004e3: 48 83 c4 08 add $0x8, $rsp
4004e7: c3 retq
00000000004004e8 <sum>:
4004e8: b8 00 00 00 00 mov $0x0, $eax
4004ed: ba 00 00 00 00 mov $0x0, $edx
4004£2: eb 09 jmp 4004fd <sum+0x15>
4004£4: 48 63 ca movslg %edx,%rcx
4004£7: 03 04 8f add (%rdi, $rcx,4) ,%eax
4004fa: 83 c2 01 add $0x1, %$edx
4004£d: 39 f2 cmp %esi, $edx
4004ff: Tc £3 31 4004£4 <sum+0xc>
400501: £3 c3 repz retq

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Loading Executable Object Files

Executable Object File

ELF header

0 Kernel virtual memory

User stack

Program header table
(required for executables)

(created at runtime)

«init section

.text section

Memory-mapped region for

.rodata section

shared libraries

.data section

.bss section

!

Source: objdump -r -d main.o 2

Memory
invisible to
user code

+—3rsp
(stack
pointer)

.symtab

Run-time heap
(created bymalloc)

.debug

line

Read/write data segment
(.data, .bss)

.strtab

Read-only code segment

Section header table
(required for relocatables)

(.init,.text, .rodata)
0x400000

Unused

0

Bryant c

Loaded
from

the
executable
file

Using PC-relative addressing for sum(): 0x4004e8 = 0x4004e3 + 0x5

Source: objdump -dx prog gz

 Comp B pective, Third Edition

Packaging Commonly Used Functions

m How to package functions commonly used by programmers?
= Math, I/0, memory management, string manipulation, etc.

= Awkward, given the linker framework so far:
= Option 1: Put all functions into a single source file
= Programmers link big object file into their programs
= Space and time inefficient
= Option 2: Put each function in a separate source file

= Programmers explicitly link appropriate binaries into their
programs

= More efficient, but burdensome on the programmer

c grammer's Perspective, Third Edition %

Old-fashioned Solution: Static Libraries

m Static libraries (.a archive files)

= Concatenate related relocatable object files into a single file with an
index (called an archive).

= Enhance linker so that it tries to resolve unresolved external references
by looking for the symbols in one or more archives.

= |f an archive member file resolves reference, link it into the executable.

v , Comp er pective, Third Edition 7

Commonly Used Libraries

libc. a (the C standard library)
® 4.6 MB archive of 1496 object files.
= 1/0, memory allocation, signal handling, string handling, data and time,
random numbers, integer math
1libm. a (the C math library)
= 2 MB archive of 444 object files.
= floating point math (sin, cos, tan, log, exp, sqrt, ...)

Creating Static Libraries

atoi.c printf.c random.c
| Translator | | Translator | | Translator |
atoi.o printf.o random.o
l
| Archiver (ar) | unix> ar rs libc.a \

atoi.o printf.o .. random.o

libc.a C standard library

m Archiver allows incremental updates
m Recompile function that changes and replace .o file in archive.

P pective, Third Edition

Linking with
Static Libraries

libvector.a

% ar -t libc.a | sort
fork.o

fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o

% ar -t libm.a | sort

e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinl.o

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Linking with Static Libraries

addvec.o multvec.o

main2.c vector.h

Archiver
(ar)

libvector.a

Relocatable

libc.a Static libraries

main2.o addvec.o .
object files modules called by printf.o
[Linker (1d) |
et Fully linked

executable object file

“c” for “compile-time”

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

printf.o and any other

void addvec(int *x, int *y,

#include <stdio.h> int *z, int n) {
#include "vector.h" inti;
int x[2] ={1, 2}; for (i=0;i<n;i++)
inty[2] ={3, 4}; 2[i] = x[i] +y[il;
int z[2]; addvec.c
int main() void multvec(int *x, int *y,
int *z, int n)
addvec(x, Y, z, 2); {
printf("z = [%d %d]\n”, int i
2[0], 2[1]);

return 0; for (i=0;i<n;i++)

} main2.c z[i] = x[i] *y[il;

multvec.c

 Comp B pective, Third Edition

Using Static Libraries

m Linker’s algorithm for resolving external references:
Scan . o files and . a files in the command line order.
During the scan, keep a list of the current unresolved references.

As each new .o or . a file, obj, is encountered, try to resolve each
unresolved reference in the list against the symbols defined in obj.

If any entries in the unresolved list at end of scan, then error.

m Problem:
= Command line order matters!
= Moral: put libraries at the end of the command line.

unix> gecc -L. libtest.o -lmine
unix> gecc -L. -lmine libtest.o
libtest.o: In function ‘main':
libtest.o(.text+0x4): undefined reference to "libfun'

« grammer's Perspective, Third Edition

Modern Solution: Shared Libraries

m Static libraries have the following disadvantages:
Duplication in the stored executables (every function needs libc)
Duplication in the running executables

Minor bug fixes of system libraries require each application to explicitly
relink

m Modern solution: Shared Libraries
= Object files that contain code and data that are loaded and linked into
an application dynamically, at either load-time or run-time
= Also called: dynamic link libraries, DLLs, . so files

G 8 pective, Third Edition B

Dynamic Linking at Load-time

main2.c vector.h unix> gcc -shared -o libvector.so \

addvec.c multvec.c

Translators /
(cpp, ccl, as) libec.so

libvector.so

Reloc'nmb_le main2.o Relocation and symbol
object file table info
\ Linker (1d) |
Paniall}{ Iinkgd prog21l
executable object file
Loader 1ibc. so
(execve) libvector.so
Code and data
Fully linked
executable | Dynamic linker (1d-1inux. so) \
in memory
Bryantand O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition £

Dynamic Linking at Run-time

/* Get a pointer to the addvec() function we just loaded */
addvec = dlsym(handle, "addvec");
if ((error = dlerror()) != NULL) {
fprintf(stderr, "%s\n", error);
exit(1);
}

/* Now we can call addvec() just like any other function */
addvec(x, y, z, 2);
printf("z = [%d %d]\n", z[0], z[1]);

/* Unload the shared library */

if (dIclose(handle) < 0) {
fprintf(stderr, "%s\n", dlerror());
exit(1);

return O;
} dll.c

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition a7

Shared Libraries (cont.)

= Dynamic linking can occur when executable is first loaded
and run (load-time linking).

= Common case for Linux, handled automatically by the dynamic linker
(1d-linux.so).

= Standard C library (1ibc. so) usually dynamically linked.

m Dynamic linking can also occur after program has begun
(run-time linking).
® |n Linux, this is done by calls to the dlopen () interface.
= Distributing software.
= High-performance web servers.
= Runtime library interpositioning.

m Shared library routines can be shared by multiple processes.
= Using mechanisms we discussed under virtual memory

P pective, Third Edition

Dynamic Linking at Run-time

#include <stdio.h>
clude <stdlib.h>
#include <dlfcn.h>

int x[2] ={1, 2};
inty[2] ={3, 4};
int z[2];

int main()
void *handle;
void (*addvec)(int *, int *, int *, int);

char *error;

/* Dynamically load the shared library that contains addvec() */
handle = dlopen(" /libvector.so", RTLD_LAZY);

if (thandle) {
fprintf(stderr, "%s\n", dlerror());
exit(1);
} dil.
< " pective, Third Edition

Sharing Revisited: Shared Objects

Process 1 Physical Process 2

. m Process 2 maps
virtual memory memory virtual memory

the shared
object.

m Notice how the
virtual
addresses can
be different.

Shared
object

grammer's Perspective, Third Edition

Position Independent Code

m Requirement

= Shared library code may be loaded at different addresses in
different processes, must still run correctly

m Solution for direct jumps: PC relative

= Target of calls and jumps is encoded as a relative offset, so works
correctly if source and target move together

m Solution for local data: also PC relative
= Offset between code and data areas is fixed at compilation time
= Use %rip as base address
= E.g., mov 0x20047d(%rip), %eax
= Add the displacement to the address of the next instruction

Local and GOT data access examples

m Source code in a shared library:

static long addent = 0; /* in this file */
extern int error; /* in another library */
void addvec(..) { ..
addcnt+
error = 0;

}

m Assembly code for addcnt++:

5£5: mov 0x200a24 ($rip), %rax # 201020 <addent>
5fc: add $0x1, %$rax
600: mov %rax, 0x200al9(%rip) # 201020 <addent>

m Assembly code for error = 0:

607: mov 0x2009c2(%rip), %rax # 200£d0 GOT entry
60e: movl $0x0, (%rax)

Address Space Layout Randomization

m Recall: defense to make attacks more difficult

= |dea: choose random locations for memory areas

= Attacker has to guess, modify attack, or leak information
m ASLR for stack and heap is easy
m ASLR for code and data depends on PIC

= Always done for shared libraries on modern systems
m ASLR for the main program is optional

= Compiling main program PIC = PIE

= “Position Independent Exectutable”
= Would slow down 32-bit x86 due to register use
= Done for security-critical programs

GOT and PLT

m How about accesses between modules, like between
main program and a shared library?
m Indirect through Global Offset Table (GOT)
= GOT contains absolute addresses of code and data

= Offset between PC and GOT is known at static linking time, but
GOT contents updated at runtime
= Adds one extra level of indirection to accesses

Procedure Lookup Table

m Used for calls to functions in a shared library
= Address determined lazily at first use
= |Indirection is transparent to the caller

00400420 <PLT[0]>:

400420: pushq 0x200bca(%rip) # 600££0 <GOT[1]>
400426: jmpg *0x200bcc (srip) # 600££8 <GOT[2]>
40042¢c: nopl 0x0(%rax)

00400430 <printf@plt>:

400430: jmpg *0x200bca (srip) # 601000 <GOT[3]>
400436: pushq $0x0
40043b: jmpq 400420 <PLT[0]>

00400440 <addvec@plt>:

400440: jmpg *0x200bc2 (rip) # 601008 <GOT[4]>
400446: pushq $0x1
40044b: jmpg 400420 <PLT[0]>

Linking Summary

m Linking is a technique that allows programs to be
constructed from multiple object files.

m Linking can happen at different times in a program’s
lifetime:
= Compile time (when a program is compiled)
= Load time (when a program is loaded into memory)
= Run time (while a program is executing)

m Understanding linking can help you avoid nasty errors and
make you a better programmer.

c gramm pective, Third Edition “

Today

m Case study: Library interpositioning

v , Comp e pective, Third Edition

Some Interpositioning Applications

m Security
= Confinement (sandboxing)
= Behind the scenes encryption
m Debugging
® |n 2014, two Facebook engineers debugged a treacherous 1-year
old bug in their iPhone app using interpositioning
= Code in the SPDY networking stack was writing to the wrong
location

= Solved by intercepting calls to Posix write functions (write, writev,
pwrite)

Source: Facebook engineering blog post at
https://code. facebook.com/posts/313033472212144/debugging-
file-corruption-on-ios/

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example program

m Goal: trace the addresses

and sizes of the allocated

#include <stdio.h> and freed blocks, without
breaking the program, and

#include <malloc.h>

time, link time, and
load/run time.

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Case Study: Library Interpositioning

m Library interpositioning : powerful linking technique that
allows programmers to intercept calls to arbitrary
functions

m Interpositioning can occur at:

Compile time: When the source code is compiled

Link time: When the relocatable object files are statically linked to
form an executable object file

Load/run time: When an executable object file is loaded into
memory, dynamically linked, and then executed.

P pective, Third Edition

Some Interpositioning Applications

= Monitoring and Profiling
= Count number of calls to functions
® Characterize call sites and arguments to functions
= Malloc tracing
= Detecting memory leaks
= Generating address traces

 Comp B pective, Third Edition

Compile-time Interpositioning

int main() without modifying the
{ source code.
int *p = malloc(32);
free(p);
O} m Three solutions: interpose

Zntic onthe libmalloc and
free functions at compile

#ifdef COMPILETIME
#include <stdio.h>
#include <malloc.h>

/* malloc wrapper function */
void *mymalloc(size_t size)
{
void *ptr = malloc(size);
printf("malloc(%d)=%p\n",
(int)size, ptr);
return ptr;

}

[* free wrapper function */
void myfree(void *ptr)

free(ptr);
printf("free(%p)\n", ptr);

#endif mymalloc.c |

Compile-time Interpositioning

#define malloc(size) mymalloc(size)
#define free(ptr) myfree(ptr)

void *mymalloc(size_t size);
void myfree(void *ptr);
malloc.h

linux> make intc
gcc -Wall -DCOMPILETIME -c mymalloc.c

gcc -Wall -I. -o intc int.c mymalloc.o
linux> make runc
./intc

malloc (32)=0x1edc010
free (0xledc010)
linux>

v G er pective, Third Edition

Link-time Interpositioning

linux> make intl

gcc -Wall -DLINKTIME -c mymalloc.c

gcc -Wall -c int.c

gcc -Wall -Wl,--wrap,malloc -Wl,--wrap,free -o intl
int.o mymalloc.o

linux> make runl

./intl

malloc(32) = 0x1aa0010
free (0x1aa0010)

linux>

m The “-W1” flag passes argument to linker, replacing each
comma with a space.
m The “--wrap,malloc” arg instructs linker to resolve
references in a special way:
= Refstomallocshouldberesolvedas wrap malloc
" Refsto _ real mallocshould be resolvedasmalloc

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Load/Run-time Interpositioning

[* free wrapper function */
void free(void *ptr)

void (*freep)(void *) = NULL;
char *error;

if ('ptr)
return;

freep = dlsym(RTLD_NEXT, “free"); /* Get address of libc free */
if ((error = dlerror()) '= NULL) {

fputs(error, stderr);

exit(1);

freep(ptr); /* Call libc free */
printf(“free(%p)\n", ptr);

#endif

mymalloc.c

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Link-time Interpositioning

#ifdef LINKTIME
#include <stdio.h>

void *__real_malloc(size_t size);
void __real_free(void *ptr);

/* malloc wrapper function */
void *__wrap_malloc(size_t size)

{
void *ptr = __real_malloc(size); /* Call libc malloc */
printf("malloc(%d) = %p\n", (int)size, ptr);
return ptr;

}

/* free wrapper function */
void __wrap_free(void *ptr)

__real_free(ptr); /* Call libc free */
printf("free(%p)\n", ptr);

#endif mymalloc.c

Load/Run-time
Interpositioning

#ifdef RUNTIME
#define_GNU_SOURCE
include <stdio.h>
clude <stdlib.h>
#include <dlfcn.h>

/* malloc wrapper function */

void *malloc(size_t size)

{
void *(*mallocp)(size_t size);
char *error;

mallocp = dIsym(RTLD_NEXT, "malloc"); /* Get addr of libc malloc */
if ((error = dlerror()) != NULL) {

fputs(error, stderr);

exit(1);

char *ptr = mallocp(size); /* Call libc malloc */
printf("malloc(%d) = %p\n", (int)size, ptr);
return ptr;
} mymalloc.c

c B pective, Third Edition 55

Load/Run-time Interpositioning

linux> make intr

gcc -Wall -DRUNTIME -shared -fpic -o mymalloc.so mymalloc.c -1dl
gcc -Wall -o intr int.c

linux> make runr

(LD_PRELOAD="./mymalloc.so" ./intr)

malloc(32) = 0xe60010

free (0xe60010)

linux>

= The LD PRELOAD environment variable tells the dynamic
linker to resolve unresolved refs (e.g., to malloc) by looking
inmymalloc. sofirst.

C grammer's Perspective, Third Edition 57

10

