


experiment was conducted in the paper by Tatsunori Mori, et al. mentioned in the literature review
[8]. In this paper, a domain-ambiguous question answering program was create with the ability
to return answers from a local knowledge base of ambiguous size using three options: no search
control, A* search control with maximum scores only, and A* search control with approximate and
maximum scores.

It is hypothesized that this Swift program will return an answer at least twice as quickly using
the A* algorithm search control compared to no search control, and that the ratio of correct answers
to total answers will be at least as high compared to no search control.

2 Literature Review

2.1 Question Answering Basics

There are a number of papers that explore the basics of question answering. One of these is
”Memory, Knowledge, and the Answering of Questions” by Donald A. Norman [9]. Cited by a
number of papers in this literature review, it explores the concept of asking questions separated
from its technical applications. It puts forth the argument that the proper answering of questions is
comprised of more than just information retrieval. Rather, a question answering agent must have a
knowledge of the questioner, the question, and the world for a proper answer. The paper also puts
forth a formal structure for representing information and gives examples. ”Strategy selection in
question answering” by Lynne M. Reder [11] builds off the Norman paper by exploring its proposed
framework more in-depth, with experiments the focus on its validity.

”A* Search Algorithm for Question Answering” [8] by Tatsunori Mori, et al. states that typical
question answering systems accept questions of five different categorical types: who, when, where,
what and how.

2.2 Question Answering Techniques

Some papers go into more depth about question answering techniques, such as ”Learning Surface
Text Patterns for a Question Answering System” by Deepak Ravichandran and Eduard Hovy [10],
which explores techniques for acquiring surface text patterns automatically from large bodies of
text, and how they can be applied specifically for answering open-domain questions.

Similarily, ”The Problem of Precision in Restricted-Domain Question-Answering. Some Pro-
posed Methods of Improvement” by Doan-Nguyen Hai and Leila Kosseim [5], proposes a number
of suggestions to improve the precision of answers given by closed-domain QA systems that fall
under two categories: improvements to the information retrieval module of a QA system, and
improvements to the final results.

”Learning Surface Text Patterns for a Question Answering System” by Deepak Ravichandran
and Eduard Hovy [10] explores techniques for acquiring surface text patterns automatically from
large bodies of text, and how they can be applied specifically for answering open-domain questions.
The paper ”Data-Intensive Question Answering” [3] focuses on developing a QA system that takes
advantage of vast quantities of text found online in real-time. It discusses the possibility of searching
the Web for answers to a question, collecting strings of relevant text, and producing the most likely
answer.

”Exploiting Redundancy in Question Answering” by Charles L. A. Clarke et al. [4] seeks to
answer the question of how to find potential answers to questions from large bodies of data, and

2



then assess the accuracy of each potential answer out of multiple answers. It proposes breaking up
this question into two processes: the first process is to retrieve data that could be an answer by
arbitrary passage retrievals that match keywords, and the second process is to search for redundant
answers in order to reach the most accurate final answer.

Finally, the paper by Tatsunori Mori, et al. mentioned in the previous subsection explores
basic methods of determining an answer for questions posed to a closed-domain question answering
system with a locally stored knowledge base, and states that fusions of Information Retrieval (IR)
and Information Extraction (IE) are typical methods. It explores implementing an A* Search
algorithm within a question answer system with a large local knowledge base, and finds that it it
increases the speed of finding an answer fourfold, but that the accuracy of the answer is decreased.

2.3 Papers on Chatterbots and Similar Applications

A number of other question answer papers focus on specific implementations in the form of
chatterbots. ”Linguistic Knowledge and Question Answering” by Gosse Bouma [1] provides an
example of a question answer system named Joost. It goes into some detail about how Joost
acquires lexical knowledge for both open and closed-domain question answering.

”An Analysis of the AskMSR Question-Answering System” [2] looks at a more complex system
that has greater dependency on data redundancy. The paper also explores strategies for predicting
when the system is likely to give the wrong answer to a question, which can be valuable information.

Lastly, the paper ”Scaling Question Answering to the Web” by Cody Knok, et al. [7] introduces
Mulder, an open-domain QA system that was the first to be available on the Web. It goes into
detail about the architecture of the system, and compares the efficiency of the system with using a
standard search engine like Google to answer questions.

3 Approaches to Implementation and Search

The program was written in Swift as an Xcode Playground program. Although typical question
answering systems accept questions of the categorical types who, when, where, what and how, only
”where” and ”who” were implemented for this program for simplicity.

It employs two different methods of determining the best answer to a posited question.

3.1 No Search Control

The first method is without search control. In this method, for each sentence of the knowledge
base, the similarity between the sentence and the question is calculated, and saved as a score for the
sentence. The similarity is determined by two things. First, by counting the number of keywords
which appear in both the sentence and the question. And second, by matching the sentence type
with the question type. For example, if the question contains ”where”, a sentence with words such
as ”in” and ”on” will have a higher score.

The sentence with the highest score is considered the answer, and the answer given to the user
is extracted from this sentence.

3



3.2 A* Search Control

To reduce the amount of necessary processing involved in evaluating each sentence for the
answer, the A* search algorithm was implemented as a second search option.

Here, instead of evaluating each sentence, only sentences with at least one matching word will
be evaluated for a score. So if the question is ”Who was the first country in Asia to host the
Summer and Winter Olympic Games?”, a sentence such as ”Japan was the first Olympics country”
would be evaluated, while a sentence like ”Japan hosts sporting events” would not be evaluated.
Simple words like ”it” are excluded from this.

The sentence with the highest score among these sentences is considered the answer.

4 Experimental Design & Results

4.1 Knowledge Base

Because the Swift program is closed-domain, the experiment included inputting paragraphs of
one subject at a time. Three subjects were used: ”Japan,” ”The Beatles”, and ”Coffee.” The
paragraphs were obtained from Wikipedia articles. The paragraphs for each subject totaled no
more than 10 kilobytes. The following example is an excerpt from one of the paragraphs:

From the 12th century until 1868, Japan was ruled by successive feudal military shoguns
who ruled in the name of the Emperor. Japan entered into a long period of isolation in
the early 17th century, which was ended in 1853 when a United States fleet pressured
Japan to open to the West.

4.2 Posited Questions

For each of the subjects, five questions were tested. These questions are all questions that can
be answered from the knowledge base by a human. For simplicity, all questions were ”where” and
”who” questions, such as ”Where is Japan?” and ”Who was the first country in Asia to host the
Summer and Winter Olympic Games?”

4.3 Results

Each question was run three times using Xcode on the same 2015 MacBook. A timer built into
the program was used to track the time it took to generate the answer to each question. The times
for search control type by subject is shown in Table 1.

Table 1: Speed of answer generation (seconds)
No Search Control A* Search Control

Subject 1 0.0025 0.0113

Subject 2 0.0018 0.0037

Subject 3 0.0038 0.0070

Average 0.0027 0.0073

4



In addition to time, the percentage of correct answers were recorded. Each answer was deter-
mined to be correct or incorrect manually. The correctness of the answers for each control type by
subject is shown in Table 2.

Table 2: Percentage of answers that were correct
No Search Control A* Search Control

Subject 1 20% 0%

Subject 2 40% 20%

Subject 3 20% 20%

Average 26.7% 13.3%

5 Analysis of Results

Table 1 of the results show that the usage of the A* search algorithm to find an answer actually
slowed down the execution of the time it took to find an answer. The program was 2.7 times faster
when it was using no search control than when it was using A* search control, even though it was
hypothesized that it would take more time.

Although A* search took longer, according to Table 2, A* provided less accurate answers. While
no search control resulted in answers that were correct 26.7% of the time, A* search control resulted
in answers that were correct only 13.3%, two times less.

6 Conclusion

The result of this experiment contradict the hypothesis that the program will return an answer
at least twice as quickly using the A* algorithm search control compared to no search control,
and that the ratio of correct answers to total answers will be at least as high compared to no
search control. This could mean that the A* search algorithm would be beneficial only for larger
knowledge bases, such as the ones in the experiments in the paper by Mori, et al. [8].

The results may also be the result of a poor implementation of the A* algorithm, or another
portion of the program. In the future, this algorithm should be tested on more subject areas with
knowledge bases of about the same size, using questions that cover all five main question answer
types: who, when, where, what and how.

References

[1] G. Bouma. Linguistic knowledge and question answering. In Proceedings of the Workshop
KRAQ’06 on Knowledge and Reasoning for Language Processing, pages 2–3. Association for
Computational Linguistics, 2006.

[2] E. Brill, S. Dumais, and M. Banko. An analysis of the askmsr question-answering system. In
Proceedings of the ACL-02 conference on Empirical methods in natural language processing-
Volume 10, pages 257–264. Association for Computational Linguistics, 2002.

5



[3] E. Brill, J. J. Lin, M. Banko, S. T. Dumais, A. Y. Ng, et al. Data-intensive question answering.
In TREC, volume 56, page 90, 2001.

[4] C. L. Clarke, G. V. Cormack, and T. R. Lynam. Exploiting redundancy in question answer-
ing. In Proceedings of the 24th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 358–365. ACM, 2001.

[5] H. Doan-Nguyen and L. Kosseim. The problem of precision in restricted-domain question-
answering. some proposed methods of improvement. In Workshop on Question Answering in
Restricted Domains. 42nd Annual Meeting of the Association for Computational Linguistics
(ACL-2004), pages 8–15, 2004.

[6] Y. Kodratoff and R. S. Michalski. Machine learning: an artificial intelligence approach, vol-
ume 3. Morgan Kaufmann, 2014.

[7] C. Kwok, O. Etzioni, and D. S. Weld. Scaling question answering to the web. ACM Transac-
tions on Information Systems (TOIS), 19(3):242–262, 2001.

[8] T. Mori, T. Ohta, K. Fujihata, and R. Kumon. A* search algorithm for question answering.
In NTCIR, 2002.

[9] D. A. Norman. Memory, knowledge, and the answering of questions. 1972.

[10] D. Ravichandran and E. Hovy. Learning surface text patterns for a question answering system.
In Proceedings of the 40th annual meeting on association for computational linguistics, pages
41–47. Association for Computational Linguistics, 2002.

[11] L. M. Reder. Strategy selection in question answering. Cognitive psychology, 19(1):90–138,
1987.

6


