


player to create their own strategy. Since
hand-crafting playing strategies can prove to
be a formidable task, AI researchers have al-
ways been interested in automatically learn-
ing such strategies from experience. How-
ever, this way of learning strategies has not
been realized yet, for most of the playing
strategies and heuristics used in game play-
ing programs are coded by hand instead of
automatically learned.

The remainder of this paper is organized
as follows. The next section discusses an ar-
ray of research advances in separate areas
of game-playing artificial intelligence. This
gives a great background of where game-
playing AI agents currently stand and what
has been done to advance a growing form of
research. Section 3 describes the approach
that MSolver takes in order to perform as
it does. Section 4 discusses the results that
LuckyToilet witnessed as they tested their
program. Finally, Section 5 presents possi-
ble areas for future work with the MSolver
implementation and Section 6 concludes the
paper.

2 Literature Review

Minesweeper has been around for a
very long time and has brought quite a
bit of attention towards its own complex-
ity and solvability. The world of artificial
intelligence has gained knowledge through
Minesweeper from research in complexity
and solvability in ranging grid dimensions,
multi-relational learning, combining myopic
optimization and tree search, reactive plan-
ning, and the application of Bayesian net-
works. Even with the vast amount of re-
search done in accordance with Minesweeper
rules and specifications, many of the best
Minesweeper agents can still only achieve a
success rate of 60% to 75%; and these agents
are only dealing with games consisting of a

small number of mines.

2.1 Computational Complexity

According to the research done by
Michiel de Bondt, Minesweeper was found
to be PP-hard when the objective is to lo-
cate all mines with the highest probability,
but is PSPACE-complete when the proba-
bility of locating all mines is infinitesimal.
In addition, determining the solvability of
a Minesweeper game at any point during a
game is NP-complete in any grid style, i.e.
triangular, square, or hexagonal [3].

Interestingly enough, the work done in
[3] shows that it is possible, and relatively
simple, to compute the solvability of a
Minesweeper map at any point during some
play through by way of boolean circuits.
This technique may be used in triangular,
square, and hexagonal grids after a required
initial guess. Seunghoon Lee [4] extended
the work done by Bondt by furthering the
proof of PPhardness. Lee added new forms
of logic circuits which include: NOT, AND,
OR gates, a curve, and a splitter for wires.
The additional circuits, along with a hexag-
onal grid style, allowed the addition of un-
certainty into the equation, which further
showed that Minesweeper is PP-hard.

2.2 Multirelational Learning

An interesting area of study that
Minesweeper has been a big part of is the use
of a general purpose ILP or multi-relational
learning system called Mio [1]. The sys-
tem is able to play a game many times and
learn its own, new strategies to play the
game. Shockingly, Mio is able to produce
strategies that perform better than the av-
erage human players win rate. The user pro-
vides the system with background knowledge
or premade predicates, which are facts and

2



rules, or clauses, that explain the games cur-
rent environment/state. These predicates
are used to decipher the game state in or-
der to decide what the best next move is. It
is this decision that the system saves and,
essentially, learns. Furthermore, these deci-
sions may be replaced by future, more ben-
eficial, decisions or saved and later greedily
searched through to find the best outcome
[2].

2.3 Search and Optimization

Many agents require reactive planning
in order to decide what to do when some-
thing happens. Optimization in this part
of an agent includes minimizing future pos-
sibilities. Sebag and Teytaud [6] imple-
ment their own methodology by embedding
a non-reactive, or myopic, solver within a
consistent reactive planning solver, namely
the Upper Confidence-Tree algorithm. The
solver is placed in the nodes as a Monte Carlo
simulator. The idea is to start off with a rea-
sonably good strategy, and later improving it
towards more optimality. This is done with
a more greedy, probabilistic search in order
to find the best possible strategy.

The search for the most optimal strat-
egy is a very important step that can act
quite differently depending on the search al-
gorithm that is used, either approximate or
exact. Nakov and Zile [5] created a count-
ing problem called #Minesweeper and ex-
plain the differences and advantages in us-
ing one of the many search algorithms in-
cluding the Luby & Velickovic, Inclusion-
exclusion, Lozinskii, CDP, and DDP algo-
rithms. Nakov and Zile found that us-
ing linear equalities as constraints allowed
a fairly fast solution to Minesweeper, but
not their proposed #Minesweeper. The use
of the DDP algorithm allows them to log-
ically conclude whether there is a mine in

a certain spot by computing #Minesweeper
twice, once with a mine in the position and
the other with the original configuration,
and finally taking their ratio.

2.4 Bayesian Networks

In any problem-solving circumstance, a
way to model and test a problem is needed
in order to understand potential limitations
of the given problem. Marta and Jiri uti-
lize the use of Bayesian Network (BN) mod-
els with the addition of applying rank-one
decompositions (RODs) to conditional prob-
ability tables (CPTs) in representing addi-
tion. Within the BN model, the computa-
tional complexity of probabilistic inference
should be enhanced with these additions. In-
terestingly, the addition had little to no ef-
fect on the computational complexity of the
BN model. The results point to the possibil-
ity that some rank-one decompositions for
the CPTs with a local structure are missed,
but only when the state of the child variable
is observed [7].

3 Approach

The MSolver agent begins by reading
the display in order to find the game screen
itself. Once the map is found, it picks a ran-
dom tile to start with and uncovers it. At
this point, there is only one tile uncovered
(hopefully not a mine), which means it needs
to start off by probabilistically finding where
the certain number of mines may be. Once
the game gets to a point where it can ac-
tually figure out safe tiles to uncover, it es-
sentially treats the full game map as many
different sections. Each section is only made
up of the tiles that relate to it. This makes
each section much easier to solve, and allows
the agent to keep track of much less. It sim-
ulates a divide-and-conquer type of strategy,

3



which can drastically cut down on memory
usage.

4 Results

As previously mentioned, Minesweeper
is a strategy dependent game that requires
substantial knowledge of logical, arithmetic,
and probabilistic reasoning. This is the rea-
son why the average win rate of human play-
ers is so low. When implementing an agent
to play the game for you, you end up pro-
gramming yours or somebody elses strategy
into the mechanics of the agent itself. This
leaves the agent unable to divert from the
strategy, and therefore is unable to make
mistakes in the sense of human error. The
win rate achieved by LuckyToilets MSolver
happened to be 50%, which is a quite low
statistic, but it has still achieved a greater
rate than the average human player.

5 Future Work

The capability to solve a Minesweeper
map of LuckyToilets MSolver was shown to
win only half the time. A 50% win rate is
better than the average human player, but it
is still not even close to being perfect. This
leaves a large window of opportunity open
for other developers to add more complex-
ity and to enhance the efficiency of MSolver.
There are plenty of search algorithms that
could be implemented in order to test which
one is best for this case. Another route for
advancing MSolver is to upgrade the way the
game map is recognized on the screen. This
part of the program needs to work perfectly
and quickly in order to allow the agent to
solve the puzzle as efficiently and quickly as
possible. Lastly, a large part of Minesweeper
is the ability to probabilistically guess which
tiles to uncover when there are no safe tiles

to uncover. The calculations used for guess-
ing the tiles should be revamped and made
more accurate in order to allow the agent to
decide on the best possible tiles in the cur-
rent game state.

6 Conclusion

Many of the various papers pertain-
ing to the game of Minesweeper explain an
incredible amount of different implementa-
tions that are able to perform with com-
pletely separate functionalities. Visually,
they are solved in the same manner, but the
grunt work done by multi-relational learn-
ing, myopic optimizations, and multitudes of
search algorithms is what allows such a vast,
research-ready subject. Minesweeper is an
easy-to-understand game, yet quite complex,
with rules that are perceived differently by
each player/agent, which allows for the cre-
ation of many strategies that are still unable
to perfectly and logically solve every game
state given.

References

[1] L. P. Castillo and S. Wrobel. Multire-
lational active learning for games. In
Machine Learning Workshop FGML, vol-
ume 1, page 2002. Citeseer, 2002.

[2] L. P. Castillo and S. Wrobel. Learning
minesweeper with multirelational learn-
ing. In IJCAI, pages 533–540, 2003.

[3] M. de Bondt. The computational com-
plexity of minesweeper. arXiv preprint
arXiv:1204.4659, 2012.

[4] S. Lee. A short note on improved logic
circuits in a hexagonal minesweeper.
arXiv preprint arXiv:1602.00398, 2016.

4



[5] P. Nakov and Z. Wei. Minesweeper,#
minesweeper, 2003.

[6] M. Sebag and O. Teytaud. Combin-
ing myopic optimization and tree search:
Application to minesweeper. In LION6,
Learning and Intelligent Optimization,
volume 7219, pages 222–236. Sringer Ver-
lag, 2012.

[7] M. Vomlelová and J. Vomlel. Ap-
plying bayesian networks in the game
of minesweeper. In Proceedings of
Czech-Japan Seminar on Data Analysis
and Decision Making under Uncertainty,
pages 153–162. Citeseer, 2009.

5


