$\omega_{2} 2$ Show that $\overline{\boldsymbol{X}}=\boldsymbol{X}\left(\boldsymbol{I}-\frac{1}{n} \boldsymbol{e} \boldsymbol{e}^{\boldsymbol{T}}\right)$ (here $\boldsymbol{e}=$ vector of all ones). What does the projector $\left(I-\frac{1}{n} e^{T}\right)$ do?

Solution: Each column of $\overline{\boldsymbol{X}}$ is $\overline{\boldsymbol{x}}=\boldsymbol{x}-\boldsymbol{\mu}$ so that $\overline{\boldsymbol{X}}=\boldsymbol{X}-\boldsymbol{\mu} \boldsymbol{e}^{\boldsymbol{T}}$, where $\boldsymbol{\mu}$ is the sample mean. But we have $\boldsymbol{\mu}=\frac{1}{n} \sum \boldsymbol{x}_{\boldsymbol{i}}=\frac{1}{n} \boldsymbol{X} \boldsymbol{e}$ and so,

$$
\bar{X}=X-\frac{1}{n} X e e^{T}=X\left[I-\frac{1}{n} e e^{T}\right]
$$

The matrix $\left(\boldsymbol{I}-\frac{1}{n} \boldsymbol{e} \boldsymbol{e}^{\boldsymbol{T}}\right)$ represents a projector that centers the data so the mean is zero.
3 Show that solution \boldsymbol{V} also minimizes 'reconstruction error' ..

Solution: The main property that is exploited in the proof is the fact that $\operatorname{Tr}(\boldsymbol{A B C})=$ $\operatorname{Tr}(\boldsymbol{B C A})$ (when dimensions are compatible). First we note that $\sum_{i}\left\|\overline{\boldsymbol{x}}_{\boldsymbol{i}}-\boldsymbol{V} \boldsymbol{V}^{\boldsymbol{T}} \overline{\boldsymbol{x}}_{\boldsymbol{i}}\right\|^{2}=$ $\|\left(\boldsymbol{I}-\boldsymbol{V} \boldsymbol{V}^{\boldsymbol{T}}\right) \boldsymbol{X}_{_} \boldsymbol{F}^{2}$. We will call \boldsymbol{P} the pojector $\boldsymbol{P}=\boldsymbol{V} \boldsymbol{V}^{\boldsymbol{T}}$. Then:

$$
\begin{aligned}
\|\left(\boldsymbol{I}-\boldsymbol{V} \boldsymbol{V}^{\boldsymbol{T}}\right) \boldsymbol{X}_{-} \boldsymbol{F}^{2} * & =\operatorname{Tr}(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}(\boldsymbol{I}-\boldsymbol{P}) \\
& =\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}-\boldsymbol{P} \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)(\boldsymbol{I}-\boldsymbol{P}) \\
& =\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{P} \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{P}\right)+\operatorname{Tr}\left(\boldsymbol{P} \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{P}\right) \\
& =\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{P} \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{P}\right)+\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{P}^{2}\right) \\
& =\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{P} \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{P}\right)+\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{P}\right) \\
& =\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{P} \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right) \\
& =\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{V} \boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right) \\
& =\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{V}\right)
\end{aligned}
$$

The first term is a constant, therefore the minimum is reached when the maxiumn of the second term is reached. \square

