\& 1 Consider

$$
A=\left(\begin{array}{ccc}
1 & 2 & -4 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right)
$$

Eigenvalues of \boldsymbol{A} ? their algebraic multiplicities? their geometric multiplicities? Is one a semisimple eigenvalue?

Solution: The eigenvalues of \boldsymbol{A} are 1, and 2. The algebraic multiplicity of 1 is 2 . To get the geometric multiplicity of the eigenvalue $\boldsymbol{\lambda}=\mathbf{1}$ we need to eigenvectors. For this we need to solve:

$$
\left(\begin{array}{ccc}
0 & 2 & -4 \\
0 & 0 & 2 \\
0 & 0 & 1
\end{array}\right) u=0
$$

There is only one solution vector (up to a product by a scalar) namely:

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

So the geometric multiplicity is one. \square
<2 Same questions if \boldsymbol{a}_{33} is replaced by one.

Solution: The matrix become

$$
A=\left(\begin{array}{ccc}
1 & 2 & -4 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

and now we have one eigenvalue algebraic multiplicity 3 .

To get the geometric multiplicity of the eigenvalue $\boldsymbol{\lambda}=\mathbf{1}$ we need to eigenvectors. For this we
need to solve:

$$
\left(\begin{array}{ccc}
0 & 2 & -4 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) u=0
$$

we still get a geometric mult. of 1 . \square
x3 Same questions if in addition \boldsymbol{a}_{12} is replaced by zero.

Solution: Solution: The matrix become

$$
A=\left(\begin{array}{ccc}
1 & 0 & -4 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

and we also have one eigenvalue with algebraic multiplicity 3 . The geometric multiplicity increases to $2 . \square$
$\otimes_{0} 4$ Show that there is at least one eigenvalue and eigenvector of $\boldsymbol{A}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{\lambda} \boldsymbol{x}$, with $\|\boldsymbol{x}\|_{2}=\mathbf{1}$
Solution: This comes from the fact that the equation $\boldsymbol{P}_{\boldsymbol{A}}(\boldsymbol{\lambda})=\operatorname{det}(\boldsymbol{A}-\boldsymbol{\lambda I})=\mathbf{0}$ is a
polynomial equation and as such it must have at least one root - a well-known result. \square

5 There is a unitary transformation \boldsymbol{P} such that $\boldsymbol{P} \boldsymbol{x}=\boldsymbol{e}_{\mathbf{1}}$. How do you define \boldsymbol{P} ?

Solution: This is just the Householder transform.. See Lecture notes number 10. \square
(20) Show that $\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{\boldsymbol{H}}=\left(\begin{array}{l|l}\boldsymbol{\lambda} & * * \\ \hline \mathbf{0} & \boldsymbol{A}_{2}\end{array}\right)$.

Solution: This is equivalent to showing that $\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{\boldsymbol{H}} \boldsymbol{e}_{1}=\boldsymbol{\lambda} \boldsymbol{e}_{1}$. We have

$$
P A P^{H} e_{1}=P A P e_{1}=P(A x)=P(\lambda x)=\lambda P x=\lambda e_{1}
$$

\square
\& 4 Another proof altogether: use Jordan form of \boldsymbol{A} and QR factorization Solution: Jordan form:

$$
A=X J X^{-1}
$$

Let $\boldsymbol{X}=\boldsymbol{Q} \boldsymbol{R}_{\mathbf{0}}$ then:

$$
A=Q R_{0} J R_{0}^{-1} Q^{H} \equiv Q R Q^{H} \quad \text { with } \quad R=R_{0} J R_{0}^{-1}
$$

\square

