Exact solution of system

$$
\left(\begin{array}{ccc}
2 & 4 & 4 \\
1 & 5 & 6 \\
1 & 3 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
6 \\
4 \\
8
\end{array}\right)
$$

Solution: You will find $\boldsymbol{x}=[1,3,-2]^{T}$.

E3 Exact operation count for GE.

Solution:

$$
\begin{align*}
T & =\sum_{k=1}^{n-1} \sum_{i=k+1}^{n}(2(n-k)+3) \tag{1}\\
& =\sum_{k=1}^{n-1}(2(n-k)+3)(n-k) \tag{2}\\
& =2 \sum_{k=1}^{n-1}(n-k)^{2}+3 \sum_{k=1}^{n-1}(n-k) \tag{3}\\
& =2 \sum_{j=1}^{n-1} j^{2}+3 \sum_{j=1}^{n-1} j \tag{4}\\
& =2 \frac{(n-1)(n)(2 n-1)}{6}+4 \times \frac{n(n-1)}{2} \tag{5}\\
& =\ldots \tag{6}\\
& =n(n-1)\left(\frac{2 n}{3}+\frac{7}{6}\right) \tag{7}
\end{align*}
$$

In (7) we used the fact that $\sum_{k=1}^{n} \boldsymbol{k}^{2}=\boldsymbol{n}(\boldsymbol{n}+\mathbf{1})(\mathbf{2 n}+\mathbf{1}) / \mathbf{6}$ and $\sum_{k=1}^{n} \boldsymbol{k}=\boldsymbol{n}(\boldsymbol{n}+\mathbf{1}) / \mathbf{2}$.
From (3) to (4) we made a change of variables $\boldsymbol{j}=\boldsymbol{n}-\boldsymbol{k}$. Finally observe the remarkable fact that the final expression (7) is always an integer (it has to be) no matter what (integer) value \boldsymbol{n} takes.

