Show that $\left(\boldsymbol{I}-\boldsymbol{\beta} \boldsymbol{v} \boldsymbol{v}^{\boldsymbol{T}}\right) \boldsymbol{x}=\boldsymbol{\alpha} \boldsymbol{e}_{\mathbf{1}}$ when $\boldsymbol{v}=\boldsymbol{x}-\boldsymbol{\alpha} \boldsymbol{e}_{\mathbf{1}}$ and $\boldsymbol{\alpha}= \pm\|\boldsymbol{x}\|_{2}$.

Solution: Equivalent to showing that

$$
x-\left(\beta x^{T} v\right) v=\alpha e_{1} \quad \text { i.e., } \quad x-\alpha e_{1}=\left(\beta x^{T} v\right) v
$$

but recall that $\boldsymbol{v}=\boldsymbol{x}-\boldsymbol{\alpha} \boldsymbol{e}_{\mathbf{1}}$ so we need to show that

$$
\beta x^{T} v=1 \quad \text { i.e., that } \frac{2}{\left\|x-\alpha e_{1}\right\|_{2}^{2}}\left(x^{T} v\right)=1
$$

$>$ Denominator $=\|x\|_{2}^{2}+\alpha^{2}-2 \alpha e_{1}^{T} x=2\left(\|x\|_{2}^{2}-\alpha e_{1}^{T} x\right)$
$>$ Numerator $=2 x^{T} v=2 x^{T}\left(x-\alpha e_{1}\right)=2\left(\|x\|_{2}^{2}-\alpha x^{T} e_{1}\right)$
Numerator/ Denominator $=1$. \square
$\square 2$ Cost of Householder QR?

Solution: Look at the algorithm: each step works in rectangle $\boldsymbol{X}(\boldsymbol{k}: \boldsymbol{m}, \boldsymbol{k}: \boldsymbol{n})$. Step \boldsymbol{k} : twice $2(m-k+1)(n-k+1)$

$$
\begin{aligned}
T(n) & =\sum_{k=1}^{n} 4(m-k+1)(n-k+1) \\
& =4 \sum_{k=1}^{n}[(m-n)+(n-k+1)](n-k+1) \\
& =4\left[(m-n) * \frac{n(n+1)}{2}+\frac{n(n+1)(2 n+1)}{6}\right] \\
& \approx(m-n) * 2 n^{2}+4 n^{3} / 3 \\
& =2 m n^{2}-\frac{2}{3} n^{3}
\end{aligned}
$$

