Δ_{1} How would you get an orthonormal basis of \boldsymbol{X} ?

Solution: Just take any basis and orthonormalize it with Gram-Schmidt of Householder QR.

2 Show how you can get a decomposition in which \boldsymbol{C} is lower (or upper) triangular, from the above factorization.

Solution: You first get any factorization in the form shown in Page 9-7 - Then to get an upper triangular \boldsymbol{C} you use the QR factorization $\boldsymbol{C}=\boldsymbol{Q R}$. Then \boldsymbol{U} is replaced by

$$
U_{n e w}=U \times\left(\begin{array}{ll}
Q & 0 \\
0 & I
\end{array}\right)
$$

and \boldsymbol{C} is replaced by \boldsymbol{R}. To get a lower triangular \boldsymbol{C} you can use the same trick applied to $\boldsymbol{A}^{\boldsymbol{T}}$ and transpose the final result. \square

H3 How can you get the ULV decomposition by using only the Householder QR factorization (possibly with pivoting)?

Solution: You first get the Householder QR factorization $\boldsymbol{A}=\boldsymbol{Q}_{\mathbf{1}} \boldsymbol{R}_{\mathbf{1}}$ of the matrix \boldsymbol{A}. The second step is to perform a Householder QR factorization of the matrix $\boldsymbol{R}_{1}^{\boldsymbol{T}}$, so you will get: $\boldsymbol{R}_{1}^{\boldsymbol{T}}=\boldsymbol{Q}_{\mathbf{2}} \boldsymbol{R}_{\mathbf{2}}$. The final step is to write:

$$
A=Q_{1} * R_{2}^{T} * Q_{2}^{T} \equiv U \boldsymbol{R} V^{T}
$$

where $\boldsymbol{U}=\boldsymbol{Q}_{1} \in \mathbb{R}^{m \times m} ; \boldsymbol{V}=\boldsymbol{Q}_{2} \in \mathbb{R}^{n \times n} ; \boldsymbol{R}=\boldsymbol{R}_{2} \in \mathbb{R}^{m \times n} \square$
$\Vdash_{4} 4$ In the proof of the SVD decomposition, define $\boldsymbol{U}, \boldsymbol{V}$ as single Householder reflectors.

Solution: We deal with \boldsymbol{U} only [proceed similarly with $\boldsymbol{V}]$. We need a matrix $\boldsymbol{P}=\boldsymbol{I}-\mathbf{2} \boldsymbol{w} \boldsymbol{w}^{\boldsymbol{T}}$ such that the first column of \boldsymbol{A} is \boldsymbol{u}_{1} and all columns are orthonormal. The second requirement is satisfied by default since \boldsymbol{P} is unitary. Note that what if \boldsymbol{P} is available we will have $\boldsymbol{P} \boldsymbol{u}_{\boldsymbol{1}}=\boldsymbol{e}_{\boldsymbol{1}}$ because $\boldsymbol{P}^{\mathbf{2}}=\boldsymbol{I}$. Therefore, the wanted \boldsymbol{w} is simply the vector that transforms the vector \boldsymbol{u}_{1} into $\boldsymbol{\alpha} \boldsymbol{e}_{\mathbf{1}} . \ldots \square$

H How can you obtain the thin SVD from the QR factorization of \boldsymbol{A} and the SVD of an $\boldsymbol{n} \times \boldsymbol{n}$ matrix?

Solution: We first get the thin QR factorization of \boldsymbol{A}, namely $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{R}$ where $\boldsymbol{Q} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and $\boldsymbol{R} \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{n}}$; Then we can get the $\operatorname{SVD} \boldsymbol{R}=\boldsymbol{U}_{\boldsymbol{R}} \boldsymbol{\Sigma} \boldsymbol{V}_{\boldsymbol{R}}^{\boldsymbol{T}}$ of \boldsymbol{R} and this yields:

$$
A=Q \times \boldsymbol{U}_{\boldsymbol{R}} \Sigma_{\boldsymbol{R}} \boldsymbol{V}_{\boldsymbol{R}}^{\boldsymbol{T}} \rightarrow \boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{\boldsymbol{T}}, \quad \text { with } \quad \boldsymbol{U}=\boldsymbol{Q} \times \boldsymbol{U}_{\boldsymbol{R}} ; \quad \Sigma=\Sigma_{\boldsymbol{R}} ; \quad \boldsymbol{V}=\boldsymbol{V}_{\boldsymbol{R}}
$$

