THE SINGULAR VALUE DECOMPOSITION (Cont.)

- The Pseudo-inverse
- Use of SVD for least-squares problems
- Application to regularization
- Numerical rank

Pseudo-inverse of an arbitrary matrix

> Let $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$ which we rewrite as

$$
A=\left(\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right)\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{1}^{T}}{V_{2}^{T}}=U_{1} \Sigma_{1} V_{1}^{T}
$$

Then the pseudo inverse of \boldsymbol{A} is

$$
A^{\dagger}=V_{1} \Sigma_{1}^{-1} U_{1}^{T}=\sum_{j=1}^{r} \frac{1}{\sigma_{j}} v_{j} u_{j}^{T}
$$

The pseudo-inverse of \boldsymbol{A} is the mapping from a vector \boldsymbol{b} to the solution $\min _{x}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}$ that has minimal norm (to be shown)
$>$ In the full-rank overdetermined case, the normal equations yield $\boldsymbol{x}=\underbrace{\left(A^{T} A\right)^{-1} A^{T}}_{A^{\dagger}} b$
$\xrightarrow{10-2 \ldots A B: 1.1 .2 .2 .2 .4 ; \text { TB: 4-5; GvL 2.4, 5.4-5 - SVD1 }}$ $10-2$

Answer: From above, must have $y_{1}=\Sigma_{1}^{-1} U_{1}^{T} b$ and $y_{2}=$ anything (free).
$>$ Recall that $\boldsymbol{x}=\boldsymbol{V} \boldsymbol{y}$ and write

$$
\begin{aligned}
x & =\left[\boldsymbol{V}_{1}, \boldsymbol{V}_{2}\right]\binom{\boldsymbol{y}_{1}}{\boldsymbol{y}_{2}}=\boldsymbol{V}_{1} \boldsymbol{y}_{1}+\boldsymbol{V}_{2} \boldsymbol{y}_{2} \\
& =\boldsymbol{V}_{1} \boldsymbol{\Sigma}_{1}^{-1} U_{1}^{T} \boldsymbol{b}+\boldsymbol{V}_{2} \boldsymbol{y}_{2} \\
& =\boldsymbol{A}^{\dagger} \boldsymbol{b}+\boldsymbol{V}_{2} \boldsymbol{y}_{2}
\end{aligned}
$$

$>$ Note: $\boldsymbol{A}^{\dagger} b \in \operatorname{Ran}\left(\boldsymbol{A}^{T}\right)$ and $\boldsymbol{V}_{2} \boldsymbol{y}_{2} \in \operatorname{Null}(\boldsymbol{A})$.
Therefore: least-squares solutions are of the form $\boldsymbol{A}^{\dagger} \boldsymbol{b}+\boldsymbol{w}$ where $\boldsymbol{w} \in \operatorname{Null}(A)$.
$>$ Smallest norm when $y_{2}=0$.
\qquad AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 - SVD1

Minimum norm solution to $\min _{x}\|A x-b\|_{2}^{2}$ satisfies $\Sigma_{1} y_{1}=$ $U_{1}^{T} b, y_{2}=0$. It is:

$$
x_{L S}=V_{1} \Sigma_{1}^{-1} U_{1}^{T} b=A^{\dagger} b
$$

Δ_{2} If $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ what are the dimensions of A^{\dagger} ?, $A^{\dagger} A$?, $\boldsymbol{A} \boldsymbol{A}^{\dagger}{ }^{\dagger}$?

Show that $\boldsymbol{A}^{\dagger} \boldsymbol{A}$ is an orthogonal projector. What are its range and null-space?Same questions for $\boldsymbol{A} \boldsymbol{A}^{\dagger}$.

Moore-Penrose Inverse

The pseudo-inverse of \boldsymbol{A} is given by

$$
A^{\dagger}=V\left(\begin{array}{cc}
\Sigma_{1}^{-1} & 0 \\
0 & 0
\end{array}\right) U^{T}=\sum_{i=1}^{r} \frac{v_{i} u_{i}^{T}}{\sigma_{i}}
$$

Moore-Penrose conditions:

The pseudo inverse of a matrix is uniquely determined by these four conditions:
(1) $\boldsymbol{A X} \boldsymbol{A}=\boldsymbol{A}$
(2) $\boldsymbol{X} \boldsymbol{A} \boldsymbol{X}=\boldsymbol{X}$
(3) $(\boldsymbol{A X})^{H}=\boldsymbol{A} \boldsymbol{X}$
(4) $(\boldsymbol{X A})^{H}=\boldsymbol{X} \boldsymbol{A}$
$>\mathrm{In}$ the full-rank overdetermined case, $\boldsymbol{A}^{\dagger}=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T}$

10-6

Least-squares problems and pseudo-inverses

> A restatement of the first part of the previous result:
Consider the general linear least-squares problem

$$
\min _{x \in S}\|x\|_{2}, \quad S=\left\{x \in \mathbb{R}^{n} \mid\|b-A x\|_{2} \min \right\}
$$

This problem always has a unique solution given by

$$
x=A^{\dagger} b
$$

minimizes $\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}$ and has the smallest 2-norm among all possible minimizers. In addition,

$$
\rho_{L S} \equiv\left\|b-A x_{L S}\right\|_{2}=\|z\|_{2} \text { with } z=\left[u_{r+1}, \ldots, u_{m}\right]^{T} b
$$

Consider the matrix:

$$
A=\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 0 & -2 & 1
\end{array}\right)
$$

- Compute the thin SVD of \boldsymbol{A}
- Find the matrix \boldsymbol{B} of rank 1 which is the closest to the above matrix in the 2-norm sense.
- What is the pseudo-inverse of \boldsymbol{A} ?
- What is the pseudo-inverse of \boldsymbol{B} ?
- Find the vector \boldsymbol{x} of smallest norm which minimizes $\|\boldsymbol{b}-\boldsymbol{A x}\|_{2}$ with $b=(1,1)^{T}$
- Find the vector \boldsymbol{x} of smallest norm which minimizes $\|\boldsymbol{b}-\boldsymbol{B} \boldsymbol{x}\|_{2}$ with $b=(1,1)^{T}$
$\xrightarrow{10-9}$ AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 - SVD1
$10-9$

Remedy: SVD regularization

Truncate the SVD by only keeping the $\sigma_{i}^{\prime} s$ that are $\geq \tau$, where $\boldsymbol{\tau}$ is a threshold
> Gives the Truncated SVD solution (TSVD solution:)

$$
x_{T S V D}=\sum_{\sigma_{i} \geq \tau} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}
$$

> Many applications [e.g., Image and signal processing,..]

Ill-conditioned systems and the SVD

$>$ Let \boldsymbol{A} be $\boldsymbol{m} \times \boldsymbol{m}$ and $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$ its SVD
$>$ Solution of $\boldsymbol{A x}=\boldsymbol{b}$ is $\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}=\sum_{i=1}^{m} \frac{u_{i}^{T} b}{\sigma_{i}} \boldsymbol{v}_{\boldsymbol{i}}$
$>$ When \boldsymbol{A} is very ill-conditioned, it has many small singular values. The division by these small σ_{i} 's will amplify any noise in the data. If $\tilde{b}=\boldsymbol{b}+\boldsymbol{\epsilon}$ then

$$
A^{-1} \tilde{b}=\sum_{i=1}^{m} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}+\underbrace{\sum_{i=1}^{m} \frac{u_{i}^{T} \epsilon}{\sigma_{i}} v_{i}}_{\text {Error }}
$$

> Result: solution could be completely meaningless.

Numerical rank and the SVD

> Assuming the original matrix \boldsymbol{A} is exactly of rank \boldsymbol{k} the computed SVD of \boldsymbol{A} will be the SVD of a nearby matrix $\boldsymbol{A}+\boldsymbol{E}$ - Can show: $\left|\hat{\sigma}_{i}-\sigma_{i}\right| \leq \boldsymbol{\alpha} \sigma_{1} \underline{\mathbf{u}}$
> Result: zero singular values will yield small computed singular values and \boldsymbol{r} larger sing. values.
$>$ Reverse problem: numerical rank - The $\boldsymbol{\epsilon}$-rank of \boldsymbol{A} :

$$
r_{\epsilon}=\min \left\{\operatorname{rank}(B): B \in \mathbb{R}^{m \times n},\|A-B\|_{2} \leq \epsilon\right\}
$$

\Perp_{0} Show that $\boldsymbol{r}_{\boldsymbol{\epsilon}}$ equals the number sing. values that are $>\boldsymbol{\epsilon}$Show: $\boldsymbol{r}_{\boldsymbol{\epsilon}}$ equals the number of columns of \boldsymbol{A} that are linearly independent for any perturbation of \boldsymbol{A} with norm $\leq \boldsymbol{\epsilon}$.
$>$ Practical problem : How to set $\boldsymbol{\epsilon}$?
${ }^{10-12}$ AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 - SVD1

Pseudo inverses of full-rank matrices

Case 1: $m>n$ Then $\boldsymbol{A}^{\dagger}=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T}$
$>$ Thin SVD is $A=U_{1} \Sigma_{1} V_{1}^{T}$ and V_{1}, Σ_{1} are $n \times n$. Then:

$$
\begin{aligned}
\left(A^{T} A\right)^{-1} A^{T} & =\left(V_{1} \Sigma_{1}^{2} V_{1}^{T}\right)^{-1} V_{1} \Sigma_{1} U_{1}^{T} \\
& =V_{1} \Sigma_{1}^{-2} V_{1}^{T} V_{1} \Sigma_{1} U_{1}^{T} \\
& =V_{1} \Sigma_{1}^{-1} U_{1}^{T} \\
& =A^{\dagger}
\end{aligned}
$$

Example: Pseudo-inverse of $\left(\begin{array}{cc}0 & 1 \\ 1 & 2 \\ 2 & -1 \\ 0 & 1\end{array}\right)$ is?

10-13 \qquad

Case 2: $m<n \mid$ Then $\boldsymbol{A}^{\dagger}=\boldsymbol{A}^{T}\left(\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}\right)^{-1}$
Thin SVD is $A=U_{1} \Sigma_{1} V_{1}^{T}$. Now U_{1}, Σ_{1} are $m \times m$ and:

$$
\begin{aligned}
A^{T}\left(A A^{T}\right)^{-1} & =V_{1} \Sigma_{1} U_{1}^{T}\left[U_{1} \Sigma_{1}^{2} U_{1}^{T}\right]^{-1} \\
& =V_{1} \Sigma_{1} U_{1}^{T} U_{1} \Sigma_{1}^{-2} U_{1}^{T} \\
& =V_{1} \Sigma_{1} \Sigma_{1}^{-2} U_{1}^{T} \\
& =V_{1} \Sigma_{1}^{-1} U_{1}^{T} \\
& =A^{\dagger}
\end{aligned}
$$

Example: Pseudo-inverse of $\left(\begin{array}{cccc}0 & 1 & 2 & 0 \\ 1 & 2 & -1 & 1\end{array}\right)$ is?
$>$ Mnemonic: The pseudo inverse of \boldsymbol{A} is \boldsymbol{A}^{T} completed by the inverse of the smallest of $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1}$ or $\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)^{-1}$ where it fits (i.e. left or right)
$10-14 \longrightarrow A B: 1.1 .2 .2 .2 .4 ;$ TB: 4-5; GvL 2.4, 5.4-5 - SVD1
${ }^{10-14}$

