EIGENVALUE PROBLEMS

- Background on eigenvalues/ eigenvectors / decompositions
- Perturbation analysis, condition numbers..
- Power method
- The QR algorithm
- Practical QR algorithms: use of Hessenberg form and shifts
- The symmetric eigenvalue problem.

Eigenvalue Problems. Their origins

- Structural Engineering $[\boldsymbol{K} \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{M} \boldsymbol{u}]$
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Bifurcation analysis [e.g., in fluid flow]
- Electronic structure calculations [Schrödinger equation..]
- Application of new era: page ranking on the world-wide web.

Eigenvalue Problems. Introduction

Let \boldsymbol{A} an $\boldsymbol{n} \times \boldsymbol{n}$ real nonsymmetric matrix. The eigenvalue problem:

$$
A x=\lambda x
$$

$\boldsymbol{\lambda} \in \mathbb{C}$: eigenvalue
$\boldsymbol{x} \in \mathbb{C}^{n}$: eigenvector

Types of Problems:

- Compute a few $\boldsymbol{\lambda}_{i}$'s with smallest or largest real parts;
- Compute all $\boldsymbol{\lambda}_{i}$'s in a certain region of \mathbb{C};
- Compute a few of the dominant eigenvalues;
- Compute all $\boldsymbol{\lambda}_{i}$'s.

Basic definitions and properties

A complex scalar $\boldsymbol{\lambda}$ is called an eigenvalue of a square matrix \boldsymbol{A} if there exists a nonzero vector \boldsymbol{u} in \mathbb{C}^{n} such that $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{u}$. The vector \boldsymbol{u} is called an eigenvector of \boldsymbol{A} associated with $\boldsymbol{\lambda}$. The set of all eigenvalues of \boldsymbol{A} is the 'spectrum' of \boldsymbol{A}. Notation: $\boldsymbol{\Lambda}(\boldsymbol{A})$.
$>\boldsymbol{\lambda}$ is an eigenvalue iff the columns of $\boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{I}$ are linearly dependent.
> ... equivalent to saying that its rows are linearly dependent. So: there is a nonzero vector \boldsymbol{w} such that

$$
w^{H}(A-\lambda I)=0
$$

$>\boldsymbol{w}$ is a left eigenvector of $\boldsymbol{A}(\boldsymbol{u}=$ right eigenvector $)$
$>\lambda$ is an eigenvalue iff $\operatorname{det}(\boldsymbol{A}-\boldsymbol{\lambda I})=0$

Basic definitions and properties (cont.)

> An eigenvalue is a root of the Characteristic polynomial:

$$
p_{A}(\lambda)=\operatorname{det}(A-\lambda I)
$$

$>$ So there are n eigenvalues (counted with their multiplicities).
> The multiplicity of these eigenvalues as roots of $\boldsymbol{p}_{\boldsymbol{A}}$ are called algebraic multiplicities.

The geometric multiplicity of an eigenvalue $\boldsymbol{\lambda}_{\boldsymbol{i}}$ is the number of linearly independent eigenvectors associated with $\boldsymbol{\lambda}_{i}$.

12-5
TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen
12-5

Two matrices \boldsymbol{A} and \boldsymbol{B} are similar if there exists a nonsingular matrix \boldsymbol{X} such that

$$
A=X B X^{-1}
$$

$>A v=\lambda v \Longleftrightarrow B\left(X^{-1} v\right)=\lambda\left(X^{-1} v\right)$ eigenvalues remain the same, eigenvectors transformed.
$>$ Issue: find \boldsymbol{X} so that \boldsymbol{B} has a simple structure
Definition: \boldsymbol{A} is diagonalizable if it is similar to a diagonal matrix
THEOREM: A matrix is diagonalizable iff it has n linearly independent eigenvectors
> ... iff all its eigenvalues are semi-simple
> ... iff its eigenvectors form a basis of \mathbb{R}^{n}
$>$ Geometric multiplicity is \leq algebraic multiplicity.
$>$ An eigenvalue is simple if its (algebraic) multiplicity is one.
> It is semi-simple if its geometric and algebraic multiplicities are equal.Consider

$$
A=\left(\begin{array}{ccc}
1 & 2 & -4 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right)
$$

Eigenvalues of \boldsymbol{A} ? their algebraic multiplicities? their geometric multiplicities? Is one a semi-simple eigenvalue?Same questions if a_{33} is replaced by one.Same questions if, in addition, a_{12} is replaced by zero.

${ }^{12-6}$

Transformations that preserve eigenvectors

Shift
$B=A-\sigma I: A v=\lambda v \Longleftrightarrow B v=(\lambda-\sigma) v$ eigenvalues move, eigenvectors remain the same.
Poly- $\quad B=p(A)=\alpha_{0} I+\cdots+\alpha_{n} A^{n}: \quad A v=\lambda v \Longleftrightarrow$ nomial $\quad B v=p(\lambda) v$
eigenvalues transformed, eigenvectors remain the same.
Invert $\quad B=A^{-1}: A v=\lambda \boldsymbol{v} \Longleftrightarrow B v=\lambda^{-1} v$ eigenvalues inverted, eigenvectors remain the same.

Shift \& $B=(A-\sigma I)^{-1}: \quad A v=\lambda v \Longleftrightarrow B v=$ Invert $\quad(\lambda-\sigma)^{-1} v$
eigenvalues transformed, eigenvectors remain the same. spacing between eigenvalues can be radically changed.
$\xrightarrow{12-7}$ TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen

THEOREM (Schur form): Any matrix is unitarily similar to a triangular matrix, i.e., for any \boldsymbol{A} there exists a unitary matrix \boldsymbol{Q} and an upper triangular matrix \boldsymbol{R} such that

$$
A=Q R Q^{H}
$$

Any Hermitian matrix is unitarily similar to a real diagonal matrix, (i.e. its Schur form is real diagonal).It is easy to read off the eigenvalues (including all the multiplicities) from the triangular matrix \boldsymbol{R}
$>$ Eigenvectors can be obtained by back-solving

Perturbation analysis

(General questions: If \boldsymbol{A} is perturbed how does an eigenvalue change? How about an eigenvector?

Also: sensitivity of an eigenvalue to perturbations

THEOREM [Gerschgorin]

$\forall \lambda \in \Lambda(A), \quad \exists i$ such that $\left|\lambda-a_{i i}\right| \leq \sum_{\substack{j=1 \\ j \neq i}}^{j=n}\left|a_{i j}\right|$.
$>$ In words: eigenvalue $\boldsymbol{\lambda}$ is located in one of the closed discs of the complex plane centered at $a_{i i}$ and with radius $\rho_{i}=\sum_{j \neq i}\left|a_{i j}\right|$.

Schur Form - Proof

Show that there is at least one eigenvalue and eigenvector of $A: A x=\lambda x$, with $\|x\|_{2}=1$There is a unitary transformation \boldsymbol{P} such that $\boldsymbol{P} \boldsymbol{x}=e_{1}$. How do you define \boldsymbol{P} ?* Show that $\boldsymbol{P} A \boldsymbol{P}^{H}=\binom{\boldsymbol{\lambda} \mid * *}{$\hline $\mathbf{0} \mid \boldsymbol{A}_{2}}$.Apply process recursively to \boldsymbol{A}_{2}.What happens if \boldsymbol{A} is Hermitian?Another proof altogether: use Jordan form of \boldsymbol{A} and QR factorization
\qquad 12-10

Proof: By contradiction. If contrary is true then there is one eigenvalue $\boldsymbol{\lambda}$ that does not belong to any of the disks, i.e., such that $\left|\lambda-a_{i i}\right|>\rho_{i}$ for all i. Write matrix $A-\lambda I$ as:

$$
A-\lambda I=D-\lambda I-[D-A] \equiv(D-\lambda I)-F
$$

where \boldsymbol{D} is the diagonal of \boldsymbol{A} and $-\boldsymbol{F}=-(\boldsymbol{D}-\boldsymbol{A})$ is the matrix of off-diagonal entries. Now write

$$
A-\lambda I=(D-\lambda I)\left(I-(D-\lambda I)^{-1} F\right) .
$$

From assumptions we have $\left\|(D-\lambda I)^{-1} F\right\|_{\infty}<1$. (Show this). The Lemma in P. 5-3 of notes would then show that $\boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{I}$ is nonsingular - a contradiction
\qquad

Gerschgorin's theorem - example

α_{10} Find a region of the complex plane where the eigenvalues of the following matrix are located:

$$
A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 2 & 0 & 1 \\
-1 & -2 & -3 & 1 \\
\frac{1}{2} & \frac{1}{2} & 0 & -4
\end{array}\right)
$$

Refinement: if disks are all disjoint then each of them contains one eigenvalue
> Refinement: can combine row and column version of the theorem (column version: apply theorem to $\boldsymbol{A}^{\boldsymbol{H}}$).

Conditioning of Eigenvalues

$>$ Assume that $\boldsymbol{\lambda}$ is a simple eigenvalue with right and left eigenvectors \boldsymbol{u} and \boldsymbol{w}^{H} respectively. Consider the matrices:

$$
A(t)=A+t E
$$

Eigenvalue $\lambda(t)$,
Eigenvector $u(t)$.
$>$ Conditioning of $\boldsymbol{\lambda}$ of \boldsymbol{A} relative to \boldsymbol{E} is $\left|\frac{d \lambda(t)}{d t}\right|_{t=0}$
$>$ Write

$$
A(t) u(t)=\lambda(t) u(t)
$$

> Then multiply both sides to the left by w^{H}

$$
\begin{aligned}
w^{H}(A+t E) u(t) & =\lambda(t) \boldsymbol{w}^{H} u(t) \quad \rightarrow \\
\lambda(t) w^{H} u(t) & =w^{H} \boldsymbol{A} u(t)+t w^{H} E u(t) \\
& =\lambda w^{H} u(t)+t \boldsymbol{w}^{H} \boldsymbol{E} u(t) .
\end{aligned}
$$

THEOREM [Bauer-Fike] Let $\tilde{\lambda}, \tilde{u}$ be an approximate eigenpair with $\|\tilde{u}\|_{2}=1$, and let $r=A \tilde{u}-\lambda \tilde{u}$ ('residual vector'). Assume \boldsymbol{A} is diagonalizable: $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}$, with \boldsymbol{D} diagonal. Then
$\exists \lambda \in \Lambda(A)$ such that $|\lambda-\tilde{\lambda}| \leq \operatorname{cond}_{2}(X)\|r\|_{2}$.

V Very restrictive result - also not too sharp in general.
$>$ Alternative formulation. If \boldsymbol{E} is a perturbation to \boldsymbol{A} then for any eigenvalue $\tilde{\boldsymbol{\lambda}}$ of $\boldsymbol{A}+\boldsymbol{E}$ there is an eigenvalue $\boldsymbol{\lambda}$ of \boldsymbol{A} such that:

$$
|\lambda-\tilde{\lambda}| \leq \operatorname{cond}_{2}(\boldsymbol{X})\|E\|_{2} .
$$Prove this result from the previous one.

\qquad 12-14

$$
\rightarrow \quad \frac{\lambda(t)-\lambda}{t} w^{H} u(t)=w^{H} E u(t)
$$

$>$ Take the limit at $t=0$,

$$
\lambda^{\prime}(0)=\frac{\boldsymbol{w}^{H} \boldsymbol{E} \boldsymbol{u}}{\boldsymbol{w}^{H} \boldsymbol{u}}
$$

> Note: the left and right eigenvectors associated with a simple eigenvalue cannot be orthogonal to each other.
$>$ Actual conditioning of an eigenvalue, given a perturbation "in the direction of $\boldsymbol{E}^{\prime \prime}$ is $\left|\lambda^{\prime}(0)\right|$.
$>$ In practice only estimate of $\|\boldsymbol{E}\|$ is available, so

$$
\left|\lambda^{\prime}(0)\right| \leq \frac{\|E u\|_{2}\|\boldsymbol{w}\|_{2}}{|(u, w)|} \leq\|E\|_{2} \frac{\|u\|_{2}\|w\|_{2}}{|(u, w)|}
$$

Definition. The condition number of a simple eigenvalue $\boldsymbol{\lambda}$ of an arbitrary matrix \boldsymbol{A} is defined by

$$
\operatorname{cond}(\lambda)=\frac{1}{\cos \theta(u, w)}
$$

in which \boldsymbol{u} and $\boldsymbol{w}^{\boldsymbol{H}}$ are the right and left eigenvectors, respectively, associated with $\boldsymbol{\lambda}$.

Example: Consider the matrix

$$
A=\left(\begin{array}{rrr}
-149 & -50 & -154 \\
537 & 180 & 546 \\
-27 & -9 & -25
\end{array}\right)
$$

Perturbations with Multiple Eigenvalues - Example
$>A=\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)=I_{3}+\left(\begin{array}{lll}0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right)=I+2 J$
$>$ Worst case perturbation is in 3,1 position: set $\boldsymbol{J}_{31}=\boldsymbol{\epsilon}$.
$>$ Eigenvalues of perturbed A are the roots of

$$
p(\mu)=(\mu-1)^{3}-4 \cdot \epsilon
$$

$>$ Hence eigenvalues of perturbed A are $1+O(\sqrt[3]{\epsilon})$.
$>$ In general, if index of eigenvalue (dimension of largest Jordan block) is k, then an $O(\epsilon)$ perturbation to A can lead to $O(\sqrt[k]{\epsilon})$ change in eigenvalue. Simple eigenvalue case corresponds to $k=$ 1.

Basic algorithm: The power method

$>$ Basic idea is to generate the sequence of vectors $A^{k} v_{0}$ where $v_{0} \neq 0$ - then normalize.
> Most commonly used normalization: ensure that the largest component of the approximation is equal to one.

The Power Method

$$
\begin{aligned}
& \text { 1. Choose a nonzero initial vector } \boldsymbol{v}^{(0)} \text {. } \\
& \text { 2. For } k=1,2, \ldots, \text { until convergence, Do: } \\
& \text { 3. } \quad v^{(k)}=\frac{1}{\alpha_{k}} \boldsymbol{A} \boldsymbol{v}^{(k-1)} \text { where } \\
& \text { 4. } \quad \boldsymbol{\alpha}_{k}=\operatorname{argmax}_{i=1, \ldots, n}\left|\left(\boldsymbol{A v}^{(k-1)}\right)_{i}\right| \\
& \text { 5. EndDo }
\end{aligned}
$$

$\operatorname{argmax}_{\mathrm{i}=1, ., ., \mathrm{n}}\left|\mathrm{x}_{\mathrm{i}}\right| \equiv$ the component x_{i} with largest modulus ${ }^{12-20} \longrightarrow$ TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.7.2 - Eigen
$\Lambda(A)=\{1,2,3\}$. Right and left eigenvectors associated with $\lambda_{1}=1$:

$$
u=\left(\begin{array}{r}
0.3162 \\
-0.9487 \\
0.0
\end{array}\right) \quad \text { and } \quad w=\left(\begin{array}{l}
0.6810 \\
0.2253 \\
0.6967
\end{array}\right)
$$

So:

$$
\operatorname{cond}\left(\lambda_{1}\right) \approx 603.64
$$

Perturbing a_{11} to -149.01 yields the spectrum:

$$
\{0.2287,3.2878,2.4735\} .
$$

$>$ as expected..
> For Hermitian (also normal matrices) every simple eigenvalue is well-conditioned, since $\operatorname{cond}(\boldsymbol{\lambda})=1$.

Convergence of the power method

THEOREM Assume there is one eigenvalue $\boldsymbol{\lambda}_{1}$ of \boldsymbol{A}, s.t. $\left|\boldsymbol{\lambda}_{1}\right|>$ $\left|\lambda_{j}\right|$, for $j \neq i$, and that λ_{1} is semi-simple. Then either the initial vector $\boldsymbol{v}^{(0)}$ has no component in $\operatorname{Null}\left(\boldsymbol{A}-\boldsymbol{\lambda}_{1} I\right)$ or $\boldsymbol{v}^{(k)}$ converges to an eigenvector associated with $\boldsymbol{\lambda}_{1}$ and $\alpha_{k} \rightarrow \boldsymbol{\lambda}_{1}$.

Proof in the diagonalizable case.
$>\boldsymbol{v}^{(k)}$ is $=$ vector $\boldsymbol{A}^{k} \boldsymbol{v}^{(0)}$ normalized by a certain scalar $\hat{\boldsymbol{\alpha}}_{k}$ in such a way that its largest component is 1 .
$>$ Decompose initial vector $\boldsymbol{v}^{(0)}$ in the eigenbasis as:

$$
v^{(0)}=\sum_{i=1}^{n} \gamma_{i} u_{i}
$$

Each \boldsymbol{u}_{i} is an eigenvector associated with $\boldsymbol{\lambda}_{\boldsymbol{i}}$.
12-21 TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4.7.5.2 - Eigen
${ }^{12-21}$
$>$ Note that $A^{k} u_{i}=\lambda_{i}^{k} u_{i}$

$$
\begin{aligned}
v^{(k)} & =\frac{1}{\text { scaling }} \times \sum_{i=1}^{n} \lambda_{i}^{k} \gamma_{i} u_{i} \\
& =\frac{1}{\text { scaling }} \times\left[\lambda_{1}^{k} \gamma_{1} u_{1}+\sum_{i=2}^{n} \lambda_{i}^{k} \gamma_{i}^{k} u_{i}\right] \\
& =\frac{1}{\text { scaling }} \times\left[u_{1}+\sum_{i=2}^{n}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \frac{\gamma_{i}}{\gamma_{1}} u_{i}\right]
\end{aligned}
$$

$>$ Second term inside bracket converges to zero. QED
$>$ Proof suggests that the convergence factor is given by

$$
\rho_{D}=\frac{\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}
$$

where $\boldsymbol{\lambda}_{\mathbf{2}}$ is the second largest eigenvalue in modulus.
\qquad

The Shifted Power Method

$>$ In previous example shifted \boldsymbol{A} into $\boldsymbol{B}=\boldsymbol{A}+\boldsymbol{I}$ before applying power method. We could also iterate with $\boldsymbol{B}(\sigma)=\boldsymbol{A}+\sigma I$ for any positive σ

Example: With $\sigma=0.1$ we get the following improvement.

Iteration	Norm of diff.	Res. Norm	Eigenvalue
20	$0.273 \mathrm{D}-01$	$0.794 \mathrm{D}-02$	1.00524001
40	$0.729 \mathrm{D}-03$	$0.210 \mathrm{D}-03$	1.00016755
60	$0.183 \mathrm{D}-04$	$0.509 \mathrm{D}-05$	1.00000446
80	$0.437 \mathrm{D}-06$	$0.118 \mathrm{D}-06$	1.00000011
88	$0.971 \mathrm{D}-07$	$0.261 \mathrm{D}-07$	1.00000002

Example: Consider a 'Markov Chain' matrix of size $n=55$. Dominant eigenvalues are $\boldsymbol{\lambda}=1$ and $\boldsymbol{\lambda}=-1>$ the power method applied directly to \boldsymbol{A} fails. (Why?)
$>$ We can consider instead the matrix $I+A$ The eigenvalue $\boldsymbol{\lambda}=1$ is then transformed into the (only) dominant eigenvalue $\boldsymbol{\lambda}=2$

Iteration	Norm of diff.	Res. norm	Eigenvalue
20	$0.639 \mathrm{D}-01$	$0.276 \mathrm{D}-01$	1.02591636
40	$0.129 \mathrm{D}-01$	$0.513 \mathrm{D}-02$	1.00680780
60	0.192D-02	0.808D-03	1.00102145
80	0.280D-03	0.121D-03	1.00014720
100	0.400D-04	$0.174 \mathrm{D}-04$	1.00002078
120	$0.562 \mathrm{D}-05$	$0.247 \mathrm{D}-05$	1.00000289
140	$0.781 \mathrm{D}-06$	$0.344 \mathrm{D}-06$	1.00000040
161	$0.973 \mathrm{D}-07$	0.430D-07	1.00000005

$>$
Question: What is the best shift-of-origin σ to use?
> Easy to answer the question when all eigenvalues are real.
Assume all eigenvalues are real and labeled decreasingly:

$$
\lambda_{1}>\lambda_{2} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

Then: If we shift A to $A-\sigma I$:
The shift σ that yields the best convergence factor is:

$$
\sigma_{o p t}=\frac{\lambda_{2}+\lambda_{n}}{2}
$$

α_{12} Plot a typical function $\phi(\sigma)=\rho(A-\sigma I)$ as a function of σ. Determine the minimum value and prove the above result.

