The QR algorithm

> The most common method for solving small (dense) eigenvalue problems. The basic algorithm:

QR without shifts

- 1. Until Convergence Do:
- Compute the QR factorization A = QR2.
- 3. Set A := RQ
- 4. EndDo
- "Until Convergence" means "Until A becomes close enough to an upper triangular matrix"

TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 - Eigen2 13-1

Above basic algorithm is never used as is in practice. Two variations:

13-3

- (1) Use shift of origin and
- (2) Start by transforming A into an Hessenberg matrix

- \blacktriangleright Note: $A_{new} = RQ = Q^H(QR)Q = Q^HAQ$
- A_{new} is similar to A throughout the algorithm . \succ

> Convergence analysis complicated – but insight: we are implicitly doing a QR factorization of A^k :

	QR-Factorize:	Multiply backward:			
Step 1	$oldsymbol{A}_0 = oldsymbol{Q}_0 oldsymbol{R}_0$	$oldsymbol{A}_1 = oldsymbol{R}_0 oldsymbol{Q}_0$			
Step 2	$oldsymbol{A}_1 = oldsymbol{Q}_1 oldsymbol{R}_1$	$\boldsymbol{A_2} = \boldsymbol{R_1}\boldsymbol{Q_1}$			
Step 3:	$A_2=Q_2R_2$	$oldsymbol{A}_3 = oldsymbol{R}_2 oldsymbol{Q}_2$ Then:			
$[Q_0Q_1Q_2][R_2R_1R_0]=Q_0Q_1A_2R_1R_0$					
$= \boldsymbol{Q}_0 \boldsymbol{Q}_1 \boldsymbol{R}_1 \boldsymbol{Q}_1 \boldsymbol{R}_1 \boldsymbol{R}_0$					
$= (Q_0R_0) (Q_0R_0) (Q_0R_0) = A^3$					
	Ă	Ă Ă			
\blacktriangleright $[oldsymbol{Q}_0 oldsymbol{Q}_1 oldsymbol{Q}_2][oldsymbol{R}_2 oldsymbol{R}_1 oldsymbol{R}_0] == QR$ factorization of A^3					
13-2	TB: 28-30: AB: 1.3	.3. 3.2.3. 3.4.2. 3.5. 3.6.2: GvL 8.1-8.2.3 - Eigen2			

Practical QR algorithms: Shifts of origin

Observation: (from theory): Last row converges fastest. Convergence is dictated by $\frac{|\lambda_n|}{|\lambda_{n-1}|}$

13.2

- We will now consider only the real symmetric case.
- Eigenvalues are real.
- $A^{(k)}$ remains symmetric throughout process.

As k goes to infinity the last column and row (except $a_{nn}^{(k)}$) converge to zero quickly.,,

13-4

> and $a_{nn}^{(k)}$ converges to lowest eigenvalue.

13-7

13-8

13-7

> Choose a w in $H_1 = I - 2ww^T$ to make the first column have zeros from position 3 to n. So $w_1 = 0$.

- > Apply to left: $B = H_1 A$
- > Apply to right: $A_1 = BH_1$.

Main observation: the Householder matrix H_1 which transforms the column A(2:n,1) into e_1 works only on rows 2 to n. When applying the transpose H_1 to the right of $B = H_1A$, we observe that only columns 2 to n will be altered. So the first column will retain the desired pattern (zeros below row 2).

Algorithm continues the same way for columns 2, ...,n-2.

QR for Hessenberg matrices

▶ Need the "Implicit Q theorem"

Suppose that $Q^T A Q$ is an unreduced upper Hessenberg matrix. Then columns 2 to n of Q are determined uniquely (up to signs) by the first column of Q.

In other words if $V^T A V = G$ and $Q^T A Q = H$ are both Hessenberg and V(:, 1) = Q(:, 1) then $V(:, i) = \pm Q(:, i)$ for i = 2: n.

Implication: To compute $A_{i+1} = Q_i^T A Q_i$ we can:

- \blacktriangleright Compute 1st column of Q_i [== scalar imes A(:,1)]
- \blacktriangleright Choose other columns so Q_i = unitary, and A_{i+1} = Hessenberg.

4. Choose $G_4 = G(4, 5, \theta_4)$ so that $(G_4^T A_3)_{53} = 0$

TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 - Eigen2

$$\blacktriangleright \ A_4 = G_4^T A_3 G_4 = \begin{bmatrix} 0 & * & * & * & * \\ 0 & 0 & * & * & * & * \\ 0 & 0 & 0 & * & * & * \\ 0 & 0 & 0 & 0 & * & * \end{bmatrix}$$

- Process known as "Bulge chasing"
- Similar idea for the symmetric (tridiagonal) case

The symmetric eigenvalue problem: Basic facts

Consider the Schur form of a real symmetric matrix A:

 $A = QRQ^H$

Since $A^H = A$ then $R = R^H >$

Eigenvalues of $oldsymbol{A}$ are real

and

There is an orthonormal basis of eigenvectors of $oldsymbol{A}$

In addition, Q can be taken to be real when A is real.

$$(A\!-\!\lambda I)(u\!+\!iv)=0
ightarrow (A\!-\!\lambda I)u=0$$
 & $(A\!-\!\lambda I)v=0$

 \succ Can select eigenvector to be either u or v

TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 – Eigen2

13-14

The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly:

13-13

 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

13-13

The eigenvalues of a Hermitian matrix \boldsymbol{A} are characterized by the relation

 $\lambda_k = \max_{S, ext{ dim}(S)=k} \quad \min_{x\in S, x
eq 0} \quad rac{(Ax,x)}{(x,x)}$

Proof: Preparation: Since A is symmetric real (or Hermitian complex) there is an orthonormal basis of eigenvectors u_1, u_2, \dots, u_n . Express any vector x in this basis as $x = \sum_{i=1}^n \alpha_i u_i$. Then : $(Ax, x)/(x, x) = [\sum \lambda_i |\alpha_i|^2]/[\sum |\alpha_i|^2]$. (a) Let S be any subspace of dimension k and let $\mathcal{W} = \operatorname{span}\{u_k, u_{k+1}, \dots, u_n\}$. A dimension argument (used before) shows that $S \cap \mathcal{W} \neq \{0\}$. So there is a non-zero x_w in $S \cap \mathcal{W}$. Express this x_w in the eigenbasis as $x_w = \sum_{i=k}^n \alpha_i u_i$. Then since $\lambda_i \leq \lambda_k$ for $i \geq k$ we have:

$$rac{(Ax_w,x_w)}{(x_w,x_w)}=rac{\sum_{i=k}^n\lambda_i|lpha_i|^2}{\sum_{i=k}^n|lpha_i|^2}\leq\lambda_k$$

So for any subspace S of dim. k we have $\min_{x\in S, x
eq 0}(Ax,x)/(x,x)\leq \lambda_k.$

(b) We now take $S_* = \operatorname{span}\{u_1, u_2, \cdots, u_k\}$. Since $\lambda_i \ge \lambda_k$ for $i \le k$, for this particular subspace we have:

$$\min_{x \ \in \ S_*, \ x
eq 0} rac{(Ax,x)}{(x,x)} = \min_{x \ \in \ S_*, \ x
eq 0} rac{\sum_{i=1}^k \lambda_i |lpha_i|^2}{\sum_{i=k}^n |lpha_i|^2} = \lambda_k.$$

(c) The results of (a) and (b) imply that the max over all subspaces S of dim. k of $\min_{x \in S, x \neq 0} (Ax, x) / (x, x)$ is equal to λ_k

13-16

$$\lambda_1 = \max_{x
eq 0} rac{(Ax,x)}{(x,x)} \qquad \lambda_n = \min_{x
eq 0} rac{(Ax,x)}{(x,x)}$$

Actually 4 versions of the same theorem. 2nd version:

$$\lambda_k = \min_{S, ext{ dim}(S) = n-k+1} \quad \max_{x \in S, x
eq 0} \quad rac{(Ax,x)}{(x,x)}$$

Other 2 versions come from ordering eigenvalues increasingly instead of decreasingly.

[Write down all 4 versions of the theorem

 \mathbb{Z}_{2} Use the min-max theorem to show that $\|A\|_{2} = \sigma_{1}(A)$ - the largest singular value of A.

13-17

13-17

TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 - Eigen2

The Law of inertia

 \blacktriangleright Inertia of a matrix = [m, z, p] with m = number of < 0eigenvalues, z = number of zero eigenvalues, and p = number of > 0 eigenvalues.

Sylvester's Law of inertia: If $X \in \mathbb{R}^{n \times n}$ is nonsingular, then Aand $X^T A X$ have the same inertia.

Z₁₃ Suppose that $A = LDL^T$ where L is unit lower triangular, and D diagonal. How many negative eigenvalues does A have?

 \swarrow_{14} Assume that A is tridiagonal. How many operations are required to determine the number of negative eigenvalues of A?

Interlacing Theorem: Denote the $k \times k$ principal submatrix of A as A_k , with eigenvalues $\{\lambda_i^{[k]}\}_{i=1}^k$. Then $\lambda_1^{[k]} \geq \lambda_1^{[k-1]} \geq \lambda_2^{[k]} \geq \lambda_2^{[k-1]} \geq \cdots \lambda_{k-1}^{[k-1]} \geq \lambda_k^{[k]}$

Example:
$$\lambda_i$$
's = eigenvalues of A , μ_i 's = eigenvalues of A_{n-1} :

Many uses.

> For example: interlacing theorem for roots of orthogonal polynomials

TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 - Eigen2

Devise an algorithm based on the inertia theorem to compute the i-th eigenvalue of a tridiagonal matrix.

13-18

What is the inertia of the matrix £06

$$\begin{pmatrix} I & F \\ F^T & 0 \end{pmatrix}$$

where F is $m \times n$, with n < m, and of full rank? [Hint: use a block LU factorization]

13-20

Bisection algorithm for tridiagonal matrices:

> Goal: to compute i-th eigenvalue of A (tridiagonal)

► Get interval [a, b] containing spectrum [Gershgorin]: $a \le \lambda_n \le \cdots \le \lambda_1 \le b$

- \blacktriangleright Let $\sigma = (a+b)/2 =$ middle of interval
- \blacktriangleright Calculate p= number of positive eigenvalues of $A-\sigma I$
- If $p \geq i$ then $\lambda_i \in \ (\sigma, \ b] o \$ set $a := \sigma$

13-21

- Else then $\lambda_i \in \ [a, \ \sigma] o \$ set $b:=\sigma$
- Repeat until b a is small enough.
 TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 Eigen2

Practical method

13-23

- How to implement the QR algorithm with shifts?
- ▶ It is best to use Givens rotations can do a shifted QR step without explicitly shifting the matrix..
- > Two most popular shifts:

$$s=a_{nn}$$
 and $s=$ smallest e.v. of $A(n-1:n,n-1:n)$

The QR algorithm for symmetric matrices

Most important method used : reduce to tridiagonal form and apply the QR algorithm with shifts.

Householder transformation to Hessenberg form yields a tridiagonal matrix because

$$HAH^T = A_1$$

is symmetric and also of Hessenberg form \succ it is tridiagonal symmetric.

Tridiagonal form preserved by QR similarity transformation

13-22

Jacobi iteration - Symmetric matrices

> Main idea: Rotation matrices of the form

13-22

J(p,q, heta) =	$\left(1\right)$	•••	0		•••	0	0	
	:	1.1		÷	÷	÷	- :	
	0	•••	С	•••	8	•••	0	\boldsymbol{p}
		•••	:	1.1	÷		- 1	
	0	•••	-s	•••	C	•••	0	\boldsymbol{q}
	+	•••		•••	÷	•••	- 1	
	0	•••	0		••••		1	

 $c = \cos \theta$ and $s = \sin \theta$ are so that $J(p, q, \theta)^T A J(p, q, \theta)$ has a zero in position (p, q) (and also (q, p))

➤ Frobenius norm of matrix is preserved – but diagonal elements become larger ➤ convergence to a diagonal.

TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 - Eigen2

TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 - Eigen2

 Let B = J^TAJ (where J ≡ J_{p,q,θ}). Look at 2 × 2 matrix B([p,q], [p,q]) (matlab notation) 	$rac{c^2-s^2}{2sc}=rac{a_{qq}-a_{pp}}{2a_{pq}}\equiv au$
► Keep in mind that $a_{pq} = a_{qp}$ and $b_{pq} = b_{qp}$ $\begin{pmatrix} b_{pp} & b_{pq} \end{pmatrix} _ \begin{pmatrix} c & -s \end{pmatrix} \begin{pmatrix} a_{pp} & a_{pq} \end{pmatrix} \begin{pmatrix} c & s \end{pmatrix}$	Letting $t = s/c \ (= an heta) o ext{quad. equation}$ $t^2 + 2 au t - 1 = 0$
$egin{aligned} & \begin{pmatrix} n & n & n \ b_{qp} & b_{qq} \end{pmatrix} & \equiv egin{pmatrix} s & c \end{pmatrix} egin{pmatrix} & n & n & n \ a_{qp} & a_{qq} \end{pmatrix} egin{pmatrix} -s & c \end{pmatrix} \ & = egin{pmatrix} c & -s \ s & c \end{pmatrix} egin{pmatrix} & \frac{ca_{pp} - sa_{pq} \mid sa_{pp} + ca_{pq}}{ca_{qp} - sa_{qq} \mid sa_{pq} + ca_{qq}} \end{bmatrix} \ & = egin{pmatrix} & = & \end{pmatrix} \end{array}$	 t = -τ ± √1 + τ² = 1/(τ±√1+τ²) Select sign to get a smaller t so θ ≤ π/4.
$egin{bmatrix} rac{c^2 a_{pp} + s^2 a_{qq} - 2sc \; a_{pq} \left (c^2 - s^2) a_{pq} - sc(a_{qq} - a_{pp}) ight }{* \left c^2 a_{qq} + s^2 a_{pp} + 2sc \; a_{pq} ight } \end{bmatrix}$	 Then : c = 1/(\sqrt{1+t^2}); s = c * t Implemented in matlab script jacrot(A,p,q) - See HW6.
Want: $(c^2 - s^2)a_{pq} - sc(a_{qq} - a_{pp}) = 0$ 13-25 TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 - Eigen2 13-25	13-26 TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 – Eigen2
► Define: $A_O = A - \text{Diag}(A) \equiv A$ 'with its diagonal entries replaced by zeros'	▶ $\ A_O\ _F$ will decrease from one step to the next. ∠ I Let $\ A_O\ _I = \max_{i \neq j} a_{ij} $. Show that
> Observations: (1) Unitary transformations preserve $\ \cdot\ _F$. (2) Only changes are in rows and columns p and q .	$\ A_O\ _F \leq \sqrt{n(n-1)} \ A_O\ _I$
Let $B = J^T A J$ (where $J \equiv J_{p,q,\theta}$). Then, $a_{pp}^2 + a_{qq}^2 + 2a_{pq}^2 = b_{pp}^2 + b_{qq}^2 + 2b_{pq}^2 = b_{pp}^2 + b_{qq}^2$	\swarrow Use this to show convergence in the case when largest entry is zeroed at each step.
because $b_{pq}=0.$ Then, a little calculation leads to:	
$egin{aligned} \ m{B}_O\ _F^2 &= \ m{B}\ _F^2 - \sum b_{ii}^2 = \ m{A}\ _F^2 - \sum b_{ii}^2 \ &= \ m{A}\ _F^2 - \sum a_{ii}^2 + \sum a_{ii}^2 - \sum b_{ii}^2 \ &= \ m{A}_O\ _F^2 + (a_{pp}^2 + a_{qq}^2 - b_{pp}^2 - b_{qq}^2) \ &= \ m{A}_O\ _F^2 - 2a_{pq}^2 \end{aligned}$	
13-27 TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 – Eigen2	TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 – Eigen2

13-27