LARGE SPARSE EIGENVALUE PROBLEMS

- Projection methods
- The subspace iteration
- Krylov subspace methods: Arnoldi and Lanczos
- Golub-Kahan-Lanczos bidiagonalization

General Tools for Solving Large Eigen-Problems

- Projection techniques Arnoldi, Lanczos, Subspace Iteration;
- Preconditioninings: shift-and-invert, Polynomials, ...
- Deflation and restarting techniques
- Computational codes often combine these three ingredients

A few popular solution Methods

• Subspace Iteration [Now less popular – sometimes used for validation]

14-1

- Arnoldi's method (or Lanczos) with polynomial acceleration
- Shift-and-invert and other preconditioners. [Use Arnoldi or Lanc-zos for $(A-\sigma I)^{-1}$.]
- Davidson's method and variants, Jacobi-Davidson
- Specialized method: Automatic Multilevel Substructuring (AMLS).

Projection Methods for Eigenvalue Problems

14-2

Projection method onto $oldsymbol{K}$ orthogonal to $oldsymbol{L}$

- Given: Two subspaces K and L of same dimension.
- Approximate eigenpairs $\tilde{\lambda}, \tilde{u}$, obtained by solving:

Find: $ilde{\lambda} \in \mathbb{C}, ilde{u} \in K$ such that $(ilde{\lambda}I - A) ilde{u} \perp L$

14-4

Two types of methods:

Orthogonal projection methods: Situation when L = K.

Oblique projection methods: When $L \neq K$.

First situation leads to Rayleigh-Ritz procedure

TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 - Eigen3

Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to eigenvectors of A.

Question: How to extract 'best' approximations to eigenvalues/ eigenvectors from this subspace?

Answer: Orthogonal projection method

- \blacktriangleright Let $oldsymbol{Q} = [q_1, \dots, q_m] =$ orthonormal basis of $oldsymbol{X}$
- > Orthogonal projection method onto X yields:

 $Q^{H}(A- ilde{\lambda}I) ilde{u}=0 \ o$

- $ig> Q^H A Q y = ilde{\lambda} y$ where $ilde{u} = Q y$
- Known as Rayleigh Ritz process

 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 - Eigen3

Subspace Iteration

14-5

Original idea: projection technique onto a subspace of the form $Y = A^k X$

14-5

Practically: A^k replaced by suitable polynomial

Advantages: • Easy to implement (in symmetric case); • Easy to analyze;

Disadvantage: Slow.

> Often used with polynomial acceleration: $A^k X$ replaced by $C_k(A)X$. Typically C_k = Chebyshev polynomial.

14-7

Procedure:

- 1. Obtain an orthonormal basis of $oldsymbol{X}$
- 2. Compute $C = Q^H A Q$ (an $m \times m$ matrix)
- 3. Obtain Schur factorization of C, $C = YRY^H$
- 4. Compute U = QY

Property: if X is (exactly) invariant, then procedure will yield exact eigenvalues and eigenvectors.

<u>Proof:</u> Since X is invariant, $(A - \tilde{\lambda}I)u = Qz$ for a certain z. $Q^HQz = 0$ implies z = 0 and therefore $(A - \tilde{\lambda}I)u = 0$.

Can use this procedure in conjunction with the subspace obtained from subspace iteration algorithm

Algorithm: Subspace Iteration with Projection

1. Start: Choose an initial system of vectors $X = [x_0, \dots, x_m]$ and an initial polynomial C_k .

14-6

- 2. Iterate: Until convergence do:
- (a) Compute $\hat{Z} = C_k(A)X$. [Simplest case: $\hat{Z} = AX$.]
- (b) Orthonormalize \hat{Z} : $[Z, R_Z] = qr(\hat{Z}, 0)$
- (c) Compute $B = Z^H A Z$
- (d) Compute the Schur factorization $B = Y R_B Y^H$ of B
- (e) Compute X := ZY.
- (f) Test for convergence. If satisfied stop. Else select a new polynomial $C'_{k'}$ and continue.

-8

TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 - Eigen3

THEOREM: Let $S_0 = span\{x_1, x_2, \ldots, x_m\}$ and assume that S_0 is such that the vectors $\{Px_i\}_{i=1,\ldots,m}$ are linearly independent where P is the spectral projector associated with $\lambda_1, \ldots, \lambda_m$. Let \mathcal{P}_k the orthogonal projector onto the subspace $S_k = span\{X_k\}$. Then for each eigenvector u_i of A, $i = 1, \ldots, m$, there exists a unique vector s_i in the subspace S_0 such that $Ps_i = u_i$. Moreover, the following inequality is satisfied

$$\|(I - \mathcal{P}_k)u_i\|_2 \le \|u_i - s_i\|_2 \left(\left| \frac{\lambda_{m+1}}{\lambda_i} \right| + \epsilon_k \right)^k, \quad (1)$$

where ϵ_k tends to zero as k tends to infinity.

KRYLOV SUBSPACE METHODS

14-10

TB: 36; AB: 4.6.1, 4.6.7-8,

14-9

$Krylov \ subspace \ methods$

Principle: Projection methods on Krylov subspaces:

$$K_m(A,v_1)= ext{span}\{v_1,Av_1,\cdots,A^{m-1}v_1\}$$

- The most important class of projection methods [for linear systems and for eigenvalue problems]
- ullet Variants depend on the subspace L
- > Let $\mu = \deg$. of minimal polynom. of v_1 . Then:
- $ullet K_m = \{p(A)v_1|p= ext{polynomial of degree} \leq m-1\}$
- $ullet K_m = K_\mu$ for all $m \geq \mu.$ Moreover, K_μ is invariant under A.

14-11

• $dim(K_m) = m$ iff $\mu \geq m$.

14-13

TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 - Eigen3

Arnoldi's algorithm

- > Goal: to compute an orthogonal basis of K_m .
- > Input: Initial vector v_1 , with $||v_1||_2 = 1$ and m.

ALGORITHM : 1. Arnoldi's procedure

For
$$j = 1, ..., m$$
 do
Compute $w := Av_j$
For $i = 1, ..., j$, do $\begin{cases} h_{i,j} := (w, v_i) \\ w := w - h_{i,j}v_i \end{cases}$
 $h_{j+1,j} = \|w\|_{2;}$
 $v_{j+1} = w/h_{j+1,j}$
End

14-12

Based on Gram-Schmidt procedure

TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 - Eigen3

4.5.4, 4.6.2; Gvl4 10.1,10.5.1 - Eigen3

Result of Arnoldi's algorithm

Hermitian case: The Lanczos Algorithm

> The Hessenberg matrix becomes tridiagonal :

$$A=A^H$$
 and $V_m^HAV_m=H_m$ $ightarrow H_m=H_m^H$

 \blacktriangleright Denote H_m by T_m and $ar{H}_m$ by $ar{T}_m$. We can write

Application to eigenvalue problems

- \blacktriangleright Write approximate eigenvector as $ilde{u}=V_my$
- Galerkin condition:

$$(A- ilde{\lambda}I)V_my \perp \mathcal{K}_m o V^H_m(A- ilde{\lambda}I)V_my = 0$$

 \blacktriangleright Approximate eigenvalues are eigenvalues of H_m

$$H_m y_j = \lambda_j y_j$$

Associated approximate eigenvectors are

$$ilde{u}_j = V_m y_j$$

> Typically a few of the outermost eigenvalues will converge first.

TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 - Eigen3

14-14

Consequence: three term recurrence

$$eta_{j+1}v_{j+1}=Av_j-lpha_jv_j-eta_jv_{j-1}$$

ALGORITHM : 2 . Lanczos

1. Choose an initial v_1 with $||v_{-1}||_2 = 1$; Set $\beta_1 \equiv 0, v_0 \equiv 0$ 2. For j = 1, 2, ..., m Do: 3. $w_j := Av_j - \beta_j v_{j-1}$ 4. $\alpha_j := (w_j, v_j)$ 5. $w_j := w_j - \alpha_j v_j$ 6. $\beta_{j+1} := ||w_j||_2$. If $\beta_{j+1} = 0$ then Stop 7. $v_{j+1} := w_j / \beta_{j+1}$ 8. EndDo

Hermitian matrix + Arnoldi \rightarrow Hermitian Lanczos

TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 - Eigen3

14-16

- > In theory v_i 's defined by 3-term recurrence are orthogonal.
- However: in practice severe loss of orthogonality;

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the first eigenpair has converged. It is a sign of loss of linear independence of the computed eigenvectors. When orthogonality is lost, then several the copies of the same eigenvalue start appearing.

Reorthogonalization

- > Full reorthogonalization reorthogonalize v_{j+1} against all previous v_i 's every time.
- > Partial reorthogonalization reorthogonalize v_{j+1} against all previous v_i 's only when needed [Parlett & Simon]
- > Selective reorthogonalization reorthogonalize v_{j+1} against computed eigenvectors [Parlett & Scott]
- No reorthogonalization Do not reorthogonalize but take measures to deal with 'spurious' eigenvalues. [Cullum & Willoughby]

14-17	TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 - Eigen3	14-18	TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 - Eigen3
	14-17		14-18
We now deal ALGORITH	liagonalization I with rectangular matrices. Let $A \in \mathbb{R}^{m \times n}$. M : 3. Golub-Kahan-Lanczos in initial v_1 with $\ v_1\ _2 = 1$;	Let:	$B_p = egin{bmatrix} lpha_1 & & & \ lpha_2 & eta_2 & & \ & \ddots & \ddots & \ & & \ddots & \ddots & \ & & & lpha_p & eta_p \end{bmatrix};$
2. For $k =$ 3. $\hat{u} :=$ 4. $\alpha_k =$ 5. $\hat{v} = 2$	$egin{aligned} & 0 \equiv 0, u_0 \equiv 0 \ 1, \dots, p \; Do: \ & Av_k - eta_{k-1} u_{k-1} \ & \ \hat{u}\ _2 \; ; u_k = \hat{u} / lpha_k \ & A^T u_k - lpha_k v_k \ & \ \hat{u}\ _2 \; . \end{aligned}$		$\begin{array}{l} \blacktriangleright \hat{B}_p = B_p(:, 1:p) \\ \blacktriangleright V_p = [v_1, v_2, \cdots, v_p] \in \mathbb{R}^{n \times p} \end{array}$ $\begin{array}{l} \blacktriangleright V_{p+1}^T V_{p+1} = I \\ \blacktriangleright U^T U_n = I \end{array}$
7. EndDo	$egin{aligned} \ \hat{v}\ _2 \ ; & v_{k+1} := \hat{v}/eta_k \ V_{p+1} &= [v_1, v_2, \cdots, v_{p+1}] &\in \mathbb{R}^{n imes (p+1)} \ U_p &= [u_1, u_2, \cdots, u_p] &\in \mathbb{R}^{m imes p} \end{aligned}$	Result:	$\begin{array}{l} \blacktriangleright U_p^{T+1} U_p = I \\ \blacktriangleright A V_p = U_p \hat{B}_p \\ \blacktriangleright A^T U_p = V_{p+1} B_p^T \end{array}$
14-19	TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3	14-20	TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 - Eigen3

> Observe that :

$$egin{aligned} A^T(AV_p) &= A^T(U_p \hat{B}_p) \ &= V_{p+1} B_p^T \hat{B}_p \end{aligned}$$

 $\blacktriangleright ~ B_p^T \hat{B}_p$ is a (symmetric) tridiagonal matrix of size (p+1) imes p

► Call this matrix $\overline{T_k}$. Then: $(A^T A)V_p = V_{p+1}\overline{T_p}$

> Standard Lanczos relation !

- > Algorithm is equivalent to standard Lanczos applied to $A^T A$.
- > Similar result for the u_i 's [involves AA^T]

More an equation Work out the details: What are the entries of \bar{T}_p relative to those of B_p ?

14-21

14-21

TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 - Eigen3