FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

- Brief review of floating point arithmetic
- Model of floating point arithmetic
- Notation, backward and forward errors

Floating point representation:

Real numbers are represented in two parts: A mantissa (significand) and an exponent. If the representation is in the base $\boldsymbol{\beta}$ then:

$$
x= \pm\left(. d_{1} d_{2} \cdots d_{t}\right) \beta^{e}
$$

$>. d_{1} d_{2} \cdots d_{t}$ is a fraction in the base- $\boldsymbol{\beta}$ representation (Generally the form is normalized in that $d_{1} \neq 0$), and e is an integer
$>$ Often, more convenient to rewrite the above as:

$$
x= \pm\left(m / \beta^{t}\right) \times \beta^{e} \equiv \pm m \times \beta^{e-t}
$$

$>$ Mantissa m is an integer with $0 \leq m \leq \beta^{t}-1$.

Roundoff errors and floating-point arithmetic

> The basic problem: The set \boldsymbol{A} of all possible representable numbers on a given machine is finite - but we would like to use this set to perform standard arithmetic operations ($+,,_{,},-, /$) on an infinite set. The usual algebra rules are no longer satisfied since results of operations are rounded.

B Basic algebra breaks down in floating point arithmetic.
Example: In floating point arithmetic.

$$
a+(b+c)!=(a+b)+c
$$Matlab experiment: For 10,000 random numbers find number of instances when the above is true. Same thing for the multiplication.

TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-. 2 - Float ${ }^{4-2}$

Machine precision - machine epsilon

$>$ Notation: $\quad f l(x)=$ closest floating point representation of real number \boldsymbol{x} ('rounding')
$>$ When a number x is very small, there is a point when $1+x==$ 1 in a machine sense. The computer no longer makes a difference between 1 and $1+\boldsymbol{x}$.

Machine epsilon: The smallest number ϵ such that $1+\epsilon$ is a float that is different from one, is called machine epsilon. Denoted by macheps or eps, it represents the distance from 1 to the next larger floating point number.
$>$ With previous representation, eps is equal to $\beta^{-(t-1)}$.

4-4 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float

Example: In IEEE standard double precision, $\beta=2$, and $t=$ 53 (includes 'hidden bit'). Therefore eps $=2^{-52}$.
Unit Round-off A real number x can be approximated by a floating number $f l(x)$ with relative error no larger than $\underline{\mathbf{u}}=\frac{1}{2} \beta^{-(t-1)}$.
$>\mathrm{u}$ is called Unit Round-off.
$>$ In fact can easily show:

$$
f l(x)=x(1+\delta) \text { with }|\delta|<\underline{\mathbf{u}}
$$

1 Matlab experiment: find the machine epsilon on your computer.Many discussions on what conditions/ rules should be satisfied by floating point arithmetic. The IEEE standard is a set of standards adopted by many CPU manufacturers.
\qquad
4-5

Example: Consider the sum of 3 numbers: $\boldsymbol{y}=\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}$.
$>$ Done as $f l(f l(a+b)+c)$

$$
\begin{aligned}
\eta & =f l(a+b)=(a+b)\left(1+\epsilon_{1}\right) \\
y_{1} & =f l(\eta+c)=(\eta+c)\left(1+\epsilon_{2}\right) \\
& =\left[(a+b)\left(1+\epsilon_{1}\right)+c\right]\left(1+\epsilon_{2}\right) \\
& \left.=\left[(a+b+c)+(a+b) \epsilon_{1}\right)\right]\left(1+\epsilon_{2}\right) \\
& =(a+b+c)\left[1+\frac{a+b}{a+b+c} \epsilon_{1}\left(1+\epsilon_{2}\right)+\epsilon_{2}\right]
\end{aligned}
$$

So disregarding the high order term $\epsilon_{1} \epsilon_{2}$

$$
\begin{aligned}
f l(f l(a+b)+c) & =(a+b+c)\left(1+\epsilon_{3}\right) \\
\epsilon_{3} & \approx \frac{a+b}{a+b+c} \epsilon_{1}+\epsilon_{2}
\end{aligned}
$$

Rule 1.

$$
f l(x)=x(1+\epsilon), \quad \text { where } \quad|\epsilon| \leq \underline{\mathbf{u}}
$$

Rule 2. For all operations \odot (one of $+,-, *, /$)

$$
f l(x \odot y)=(x \odot y)\left(1+\epsilon_{\odot}\right), \quad \text { where } \quad\left|\epsilon_{\odot}\right| \leq \underline{\mathbf{u}}
$$

Rule 3. For + , * operations

$$
f l(a \odot b)=f l(b \odot a)
$$

Matlab experiment: Verify experimentally Rule 3 with 10,000 randomly generated numbers $\boldsymbol{a}_{i}, \boldsymbol{b}_{i}$.
\qquad
\qquad TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-. 2 - Float ${ }^{4-6}$

If we redid the computation as $y_{2}=f l(a+f l(b+c))$ we would find

$$
\begin{aligned}
f l(a+f l(b+c)) & =(a+b+c)\left(1+\epsilon_{4}\right) \\
\epsilon_{4} & \approx \frac{b+c}{a+b+c} \epsilon_{1}+\epsilon_{2}
\end{aligned}
$$

$>$ The error is amplified by the factor $(\boldsymbol{a}+\boldsymbol{b}) / \boldsymbol{y}$ in the first case and $(b+c) / y$ in the second case.
$>$ In order to sum n numbers accurately, it is better to start with small numbers first. [However, sorting before adding is not worth it.]
$>$ But watch out if the numbers have mixed signs!

The absolute value notation

$>$ For a given vector $\boldsymbol{x},|x|$ is the vector with components $\left|x_{i}\right|$, i.e., $|x|$ is the component-wise absolute value of \boldsymbol{x}.
$>$ Similarly for matrices:

$$
|A|=\left\{\left|a_{i j}\right|\right\}_{i=1, \ldots, m ; j=1, \ldots, n}
$$

> An obvious result: The basic inequality

$$
\left|f l\left(a_{i j}\right)-a_{i j}\right| \leq \underline{\mathbf{u}}\left|a_{i j}\right|
$$

translates into

$$
f l(A)=A+E \quad \text { with } \quad|E| \leq \underline{\mathbf{u}}|A|
$$

$>A \leq B$ means $a_{i j} \leq b_{i j}$ for all $1 \leq i \leq m ; 1 \leq j \leq n$
\qquad ${ }^{4-9}$

$$
A=\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \quad B=\left(\begin{array}{ll}
d & e \\
0 & f
\end{array}\right)
$$

Consider the product: $f l(\boldsymbol{A} . \boldsymbol{B})=$

$$
\left[\begin{array}{c|c}
a d\left(1+\epsilon_{1}\right) & {\left[a e\left(1+\epsilon_{2}\right)+b f\left(1+\epsilon_{3}\right)\right]\left(1+\epsilon_{4}\right)} \\
\hline 0 & c f\left(1+\epsilon_{5}\right)
\end{array}\right]
$$

with $\epsilon_{i} \leq \underline{\mathrm{u}}$, for $i=1, \ldots, 5$. Result can be written as:

$$
\left[\begin{array}{c|c}
a & b\left(1+\epsilon_{3}\right)\left(1+\epsilon_{4}\right) \\
\hline 0 & c\left(1+\epsilon_{5}\right)
\end{array}\right]\left[\begin{array}{c|c}
d\left(1+\epsilon_{1}\right) & e\left(1+\epsilon_{2}\right)\left(1+\epsilon_{4}\right) \\
\hline 0 & f
\end{array}\right]
$$

$>$ So $f l(\boldsymbol{A} \cdot \boldsymbol{B})=\left(\boldsymbol{A}+\boldsymbol{E}_{\boldsymbol{A}}\right)\left(\boldsymbol{B}+\boldsymbol{E}_{B}\right)$.
$>$ Backward errors $\boldsymbol{E}_{\boldsymbol{A}}, \boldsymbol{E}_{\boldsymbol{B}}$ satisfy:

$$
\left|E_{A}\right| \leq 2 \underline{\mathrm{u}}|A|+O\left(\underline{\mathrm{u}}^{2}\right) ; \quad\left|E_{B}\right| \leq 2 \underline{\mathrm{u}}|B|+O\left(\underline{\mathrm{u}}^{2}\right)
$$

Backward and forward errors

> Assume the approximation \hat{y} to $y=\operatorname{alg}(x)$ is computed by some algorithm with arithmetic precision ϵ. Possible analysis: find an upper bound for the Forward error

$$
|\Delta y|=|y-\hat{y}|
$$

$>$ This is not always easy.
Alternative question: find equivalent perturbation on initial data \bar{x} that produces the result $\hat{\boldsymbol{y}}$. In other words, find Δx so that:

$$
\operatorname{alg}(x+\Delta x)=\hat{y}
$$

$>$ The value of $|\Delta x|$ is called the backward error. An analysis to find an upper bound for $|\Delta x|$ is called Backward error analysis.
\qquad

- When solving $\boldsymbol{A x}=\boldsymbol{b}$ by Gaussian Elimination, we will see that a bound on $\left\|e_{x}\right\|$ such that this holds exactly:

$$
A\left(x_{\text {computed }}+e_{x}\right)=b
$$

is much harder to find than bounds on $\left\|\boldsymbol{E}_{\boldsymbol{A}}\right\|,\left\|e_{b}\right\|$ such that this holds exactly:

$$
\left(A+\boldsymbol{E}_{A}\right) x_{\text {computed }}=\left(b+e_{b}\right)
$$

Note: In many instances backward errors are more meaningful than forward errors: if initial data is accurate only to 4 digits say, then my algorithm for computing x need not guarantee a backward error of less then 10^{-10} for example. A backward error of order 10^{-4} is acceptable.

Error Analysis: Inner product

> Inner products are in the innermost parts of many calculations. Their analysis is important.

Lemma: If $\left|\delta_{i}\right| \leq \underline{\mathbf{u}}$ and $n \underline{\mathbf{u}}<1$ then

$\Pi_{i=1}^{n}\left(1+\delta_{i}\right)=1+\theta_{n}$ where $\left|\theta_{n}\right| \leq \frac{n \underline{\mathbf{u}}}{1-n \underline{\mathbf{u}}}$
$>$ Common notation $\gamma_{n} \equiv \frac{n \underline{u}}{1-n \underline{u}}$Prove the lemma [Hint: use induction]

Can use the following simpler result:

$$
\begin{aligned}
& \text { Lemma: If }\left|\delta_{i}\right| \leq \underline{\mathbf{u}} \text { and } n \underline{\mathbf{u}}<.01 \text { then } \\
& \qquad \Pi_{i=1}^{n}\left(1+\delta_{i}\right)=1+\theta_{n} \text { where }\left|\theta_{n}\right| \leq 1.01 n \underline{\mathbf{u}}
\end{aligned}
$$

Example: Previous sum of numbers can be written

$$
\begin{aligned}
f l(a+b+c)= & a\left(1+\epsilon_{1}\right)\left(1+\epsilon_{2}\right) \\
& +b\left(1+\epsilon_{1}\right)\left(1+\epsilon_{2}\right)+c\left(1+\epsilon_{2}\right) \\
= & a\left(1+\theta_{1}\right)+b\left(1+\theta_{2}\right)+c\left(1+\theta_{3}\right) \\
= & \text { exact sum of slightly perturbed inputs, }
\end{aligned}
$$

where all θ_{i} 's satisfy $\left|\theta_{i}\right| \leq 1.01 n \underline{\mathrm{u}}$ (here $n=2$).
$>$ Alternatively, can write 'forward' bound:

$$
|f l(a+b+c)-(a+b+c)| \leq\left|a \theta_{1}\right|+\left|b \theta_{2}\right|+\left|c \theta_{3}\right| .
$$

4-14 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float
${ }^{4-14}$

$$
\text { Expand: } \begin{aligned}
s_{3}= & x_{1} y_{1}\left(1+\eta_{1}\right)\left(1+\epsilon_{2}\right)\left(1+\epsilon_{3}\right) \\
& +x_{2} y_{2}\left(1+\eta_{2}\right)\left(1+\epsilon_{2}\right)\left(1+\epsilon_{3}\right) \\
& +x_{3} y_{3}\left(1+\eta_{3}\right)\left(1+\epsilon_{3}\right)
\end{aligned}
$$

Induction would show that [with convention that $\epsilon_{1} \equiv 0$]

$$
s_{n}=\sum_{i=1}^{n} x_{i} y_{i}\left(1+\eta_{i}\right) \prod_{j=i}^{n}\left(1+\epsilon_{j}\right)
$$

1. $s_{1}=f l\left(x_{1} y_{1}\right)=\left(x_{1} y_{1}\right)\left(1+\eta_{1}\right)$
2. $s_{2}=f l\left(s_{1}+f l\left(x_{2} y_{2}\right)\right)=f l\left(s_{1}+x_{2} y_{2}\left(1+\eta_{2}\right)\right)$
$=\left(x_{1} y_{1}\left(1+\eta_{1}\right)+x_{2} y_{2}\left(1+\eta_{2}\right)\right)\left(1+\epsilon_{2}\right)$
$=x_{1} y_{1}\left(1+\eta_{1}\right)\left(1+\epsilon_{2}\right)+x_{2} y_{2}\left(1+\eta_{2}\right)\left(1+\epsilon_{2}\right)$
3. $s_{3}=f l\left(s_{2}+f l\left(x_{3} y_{3}\right)\right)=f l\left(s_{2}+x_{3} y_{3}\left(1+\eta_{3}\right)\right)$
$=\left(s_{2}+x_{3} y_{3}\left(1+\eta_{3}\right)\right)\left(1+\epsilon_{3}\right)$
$\xrightarrow{4.15}$ TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2- Float

How many terms in the coefficient of $x_{i} \boldsymbol{y}_{i}$ do we have?

- When $i>1: 1+(n-i+1)=n-i+2$
- When $i=1: n$ (since $\epsilon_{1}=0$ does not count)

Bottom line: always $\leq \boldsymbol{n}$.
${ }^{4-16}$ TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float
$>$ For each of these products
$\left(1+\eta_{i}\right) \prod_{j=i}^{n}\left(1+\epsilon_{j}\right)=1+\theta_{i}, \quad$ with $\quad\left|\theta_{i}\right| \leq \gamma_{n} \underline{\mathbf{u}} \quad$ so:
$s_{n}=\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{y}_{i}\left(\mathbf{1}+\boldsymbol{\theta}_{i}\right) \quad$ with $\quad\left|\boldsymbol{\theta}_{i}\right| \leq \gamma_{n} \quad$ or:

$$
\boldsymbol{f l}\left(\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{y}_{i}\right)=\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{y}_{i}+\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{y}_{i} \boldsymbol{\theta}_{i} \quad \text { with } \quad\left|\boldsymbol{\theta}_{i}\right| \leq \gamma_{n}
$$

> This leads to the final result (forward form)

$$
\left|f l\left(\sum_{i=1}^{n} x_{i} y_{i}\right)-\sum_{i=1}^{n} x_{i} y_{i}\right| \leq \gamma_{n} \sum_{i=1}^{n}\left|x_{i}\right|\left|y_{i}\right|
$$

$>$ or (backward form)

$$
\begin{array}{r}
\boldsymbol{f l}\left(\sum_{i=1}^{n} \boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}\right)=\sum_{i=1}^{n} \boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}\left(\mathbf{1}+\boldsymbol{\theta}_{\boldsymbol{i}}\right) \text { with }\left|\boldsymbol{\theta}_{\boldsymbol{i}}\right| \leq \gamma_{\boldsymbol{n}} \\
\text { TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float }
\end{array}
$$

Main result on inner products:

> Backward error expression:

$$
f l\left(x^{T} y\right)=\left[x . *\left(1+d_{x}\right)\right]^{T}\left[y . *\left(1+d_{y}\right)\right]
$$

where $\left\|d_{\square}\right\|_{\infty} \leq 1.01 n \underline{\mathbf{u}}, \square=x, y$.
$>$ Can show equality valid even if one of the $\boldsymbol{d}_{x}, \boldsymbol{d}_{\boldsymbol{y}}$ absent.
$>$ Forward error expression: $\left|f l\left(x^{T} y\right)-x^{T} y\right| \leq \gamma_{n}|x|^{T}|y|$ with $0 \leq \gamma_{n} \leq 1.01 n \underline{u}$.
$>$ Elementwise absolute value $|x|$ and multiply .* notation.
$>$ Above assumes $\boldsymbol{n} \underline{\mathbf{u}} \leq .01$.
For $\underline{\mathbf{u}}=2.0 \times 10^{-16}$, this holds for $n \leq 4.5 \times 10^{13}$.
$\xrightarrow{4.18 \text { TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float }}$
4-18
$<_{04}$ Assume you use single precision for which you have $\underline{\mathbf{u}}=2 . \times$ 10^{-6}. What is the largest \boldsymbol{n} for which $\boldsymbol{n} \underline{\mathbf{u}} \leq 0.01$ holds? Any conclusions for the use of single precision arithmetic?What does the main result on inner products imply for the case when $\boldsymbol{y}=\boldsymbol{x}$? [Contrast the relative accuracy you get in this case vs. the general case when $\boldsymbol{y} \neq \boldsymbol{x}$]

$$
\left|f l\left(x^{T} y\right)-x^{T} y\right| \leq n \underline{\mathbf{u}}|x|^{T}|y|+O\left(\underline{\mathrm{u}}^{2}\right)
$$

> Consequence of lemma:

$$
|f l(A * B)-A * B| \leq \gamma_{n}|A| *|B|
$$

> Another way to write the result (less precise) is

Show for any x, y, there exist $\Delta x, \Delta y$ such that

$$
\begin{aligned}
& f l\left(x^{T} y\right)=(x+\Delta x)^{T} y, \quad \text { with } \quad|\Delta x| \leq \gamma_{n}|x| \\
& f l\left(x^{T} y\right)=x^{T}(y+\Delta y), \quad \text { with } \quad|\Delta y| \leq \gamma_{n}|y|
\end{aligned}
$$

x_{0} (Continuation) Let \boldsymbol{A} an $m \times n$ matrix, x an n-vector, and $\boldsymbol{y}=\boldsymbol{A x}$. Show that there exist a matrix $\Delta \boldsymbol{A}$ such

$$
f l(y)=(A+\Delta A) x, \quad \text { with } \quad|\Delta A| \leq \gamma_{n}|A|
$$

α_{8} (Continuation) From the above derive a result about a column of the product of two matrices \boldsymbol{A} and \boldsymbol{B}. Does a similar result hold for the product $\boldsymbol{A B}$ as a whole?

The computed solution $\hat{\boldsymbol{x}}$ of the triangular system $\boldsymbol{U \boldsymbol { x }}=\boldsymbol{b}$ computed by the back-substitution algorithm satisfies:

$$
(U+E) \hat{x}=b
$$

with

$$
|E| \leq n \underline{\mathrm{u}}|U|+O\left(\underline{\mathrm{u}}^{2}\right)
$$

> Backward error analysis. Computed x solves a slightly perturbed system.
Backward error not large in general. It is said that triangular solve is "backward stable".

Recall

ALGORITHM: 1. Back-Substitution algorithm

```
For \(i=n:-1: 1\) do:
    \(t:=b_{i}\)
    \(\left.\begin{array}{c}\text { For } \boldsymbol{j}=\boldsymbol{i}+1: n \text { do } \\ \quad t:=t-a_{i j} x_{j}\end{array}\right\} \begin{aligned} t & :=t-\left(a_{i, i+1: n}, x_{i+1: n}\right) \\ & =t-\text { an inner product }\end{aligned}\)
    End
    \(x_{i}=t / a_{i i}\)
    End
```

$>$ We must require that each $a_{i i} \neq 0$
Round-off error (use previous results for (\cdot, \cdot))?
\qquad

Error Analysis for Gaussian Elimination

If no zero pivots are encountered during Gaussian elimination (no pivoting) then the computed factors $\hat{\boldsymbol{L}}$ and $\hat{\boldsymbol{U}}$ satisfy

$$
\hat{L} \hat{\boldsymbol{U}}=\boldsymbol{A}+\boldsymbol{H}
$$

with

$$
|H| \leq 3(n-1) \times \underline{\mathbf{u}}(|A|+|\hat{L}||\hat{U}|)+O\left(\underline{\mathrm{u}}^{2}\right)
$$

Solution \hat{x} computed via $\hat{\boldsymbol{L}} \hat{\boldsymbol{y}}=\boldsymbol{b}$ and $\hat{\boldsymbol{U}} \hat{\boldsymbol{x}}=\hat{y}$ is s . t.

$$
\begin{gathered}
(A+E) \hat{x}=b \text { with } \\
|E| \leq n \underline{\mathrm{u}}(3|A|+5|\hat{L}||\hat{U}|)+O\left(\underline{\mathrm{u}}^{2}\right)
\end{gathered}
$$

> "Backward" error estimate.
$>|\hat{L}|$ and $|\hat{U}|$ are not known in advance - they can be large.
> What if partial pivoting is used?
> Permutations introduce no errors. Equivalent to standard LU factorization on matrix $\boldsymbol{P A}$.
$>|\hat{L}|$ is small since $l_{i j} \leq 1$. Therefore, only \boldsymbol{U} is "uncertain"

- In practice partial pivoting is "stable" - i.e., it is highly unlikely to have a very large \boldsymbol{U}.

