SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEMS OF EQUATIONS

- Symmetric positive definite matrices.
- The $L D L^{T}$ decomposition; The Cholesky factorization
${ }^{6-1}$

A few properties of SPD matrices

$>$ Diagonal entries of \boldsymbol{A} are positive
Recall: the \boldsymbol{k}-th principal submatrix $\boldsymbol{A}_{\boldsymbol{k}}$ is the $\boldsymbol{k} \times \boldsymbol{k}$ submatrix of A with entries $a_{i j}, 1 \leq i, j \leq k$ (Matlab: $A(1: k, 1: k)$).Each $\boldsymbol{A}_{\boldsymbol{k}}$ is SPDConsequence: $\operatorname{Det}\left(A_{k}\right)>0$ for $k=1, \cdots, n$.If \boldsymbol{A} is SPD then for any $\boldsymbol{n} \times \boldsymbol{k}$ matrix \boldsymbol{X} of rank \boldsymbol{k}, the matrix $\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X}$ is SPD.
$>$ The mapping: $\quad x, y \quad \rightarrow \quad(x, y)_{A} \equiv(A x, y)$
defines a proper inner product on \mathbb{R}^{n}. The associated norm, denoted by $\|\cdot\|_{A}$, is called the energy norm, or simply the A-norm:

$$
\|x\|_{A}=(A x, x)^{1 / 2}=\sqrt{x^{T} A x}
$$

Positive-Definite Matrices

- A real matrix is said to be positive definite if

$$
(A u, u)>0 \text { for all } u \neq 0 u \in \mathbb{R}^{n}
$$

$>$ Let \boldsymbol{A} be a real positive definite matrix. Then there is a scalar $\alpha>0$ such that

$$
(A u, u) \geq \alpha\|u\|_{2}^{2}
$$

- Consider now the case of Symmetric Positive Definite (SPD) matrices.
$>$ Consequence 1: \boldsymbol{A} is nonsingular
> Consequence 2: the eigenvalues of \boldsymbol{A} are (real) positive
${ }^{6-2}$ TB: 23; AB:1.3.1-2,1.5.1-4; GvL 4 - SPD
${ }^{6-2}$
> Related measure in Machine Learning, Vision, Statistics: the Mahalanobis distance between two vectors:

$$
d_{A}(x, y)=\|x-y\|_{A}=\sqrt{(x-y)^{T} A(x-y)}
$$

Appropriate distance (measured in \# standard deviations) if x is a sample generated by a Gaussian distribution with covariance matrix \boldsymbol{A} and center \boldsymbol{y}.

More terminology

A matrix is Positive
Semi-Definite if:

$(A u, u) \geq 0$ for all $u \in \mathbb{R}^{n}$

- Eigenvalues of symmetric positive semi-definite matrices are real nonnegative, i.e., ...

$>\ldots \boldsymbol{A}$ can be singular [If not, \boldsymbol{A} is SPD]

$>$ A matrix is said to be Negative Definite if $-\boldsymbol{A}$ is positive definite. Similar definition for Negative Semi-Definite

A matrix that is neither positive semi-definite nor negative semidefinite is indefiniteShow that if $\boldsymbol{A}^{T}=\boldsymbol{A}$ and $(\boldsymbol{A x}, \boldsymbol{x})=0 \forall x$ then $\boldsymbol{A}=0$Show: $A \neq 0$ is indefinite iff $\exists x, y:(A x, x)(A y, y)<0$ $6-5$ \qquad
${ }^{6-5}$

The $L D L^{T}$ and Cholesky factorizations

$\underbrace{}_{66}$ The LU factorization of an SPD matrix \boldsymbol{A} exists
$>$ Let $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ and $\boldsymbol{D}=\boldsymbol{\operatorname { d i a g }}(\boldsymbol{U})$ and set $M \equiv\left(\boldsymbol{D}^{-1} \boldsymbol{U}\right)^{T}$

$$
\text { Then } \quad A=\boldsymbol{L} U=\boldsymbol{L} D\left(D^{-1} U\right)=\boldsymbol{L} \boldsymbol{D} M^{T}
$$

$>$ Both L and M are unit lower triangular
$>$ Consider $L^{-1} A L^{-T}=D M^{T} L^{-T}$
> Matrix on the right is upper triangular. But it is also symmetric.
Therefore $M^{T} L^{-T}=I$ and so $M=L$
$>$ The diagonal entries of \boldsymbol{D} are positive [Proof: consider $\boldsymbol{L}^{-1} \boldsymbol{A} \boldsymbol{L}^{-T}=$ $D]$. In the end:

$$
A=L D L^{T}=G G^{T} \text { where } G=L D^{1 / 2}
$$

$\xrightarrow{6-6} \longrightarrow$ TB: 23; AB:1.3.1-.2,1.5.1-4; GvL 4 - SPD
${ }^{6-6}$

Row-Cholesky (outer product form)

Scale the rows as the algorithm proceeds. Line 4 becomes

$$
a(i,:):=a(i,:)-[a(k, i) / \sqrt{a(k, k)}] *[a(k,:) / \sqrt{a(k, k)}]
$$

ALGORITHM: 1. Outer product Cholesky

$$
\begin{aligned}
& \text { 1. For } k=1: n \text { Do: } \\
& \text { 2. } A(k, k: n)=A(k, k: n) / \sqrt{A(k, k)} \text {; } \\
& \text { 3. For } i:=k+1: n D o: \\
& \text { 4. } A(i, i: n)=A(i, i: n)-A(k, i) * A(k, i: n) ; \\
& \text { 5. End } \\
& \text { 6. End } \\
& >\text { Result: Upper triangular matrix } U \text { such } A=U^{T} U \text {. }
\end{aligned}
$$

> This will give the U matrix of the LU factorization. Therefore $D=\operatorname{diag}(U), L^{T}=D^{-1} U$.
\qquad

Example:

$$
A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 5 & 0 \\
2 & 0 & 9
\end{array}\right)
$$Is \boldsymbol{A} symmetric positive definite?What is the $\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ factorization of \boldsymbol{A} ?What is the Cholesky factorization of \boldsymbol{A} ?

Assume that first $j-1$ columns of G already known.
> Compute unscaled column-vector:

$$
v=A(:, j)-\sum_{k=1}^{j-1} G(j, k) G(:, k)
$$

$>$ Notice that $\boldsymbol{v}(j) \equiv G(j, j)^{2}$.
$>$ Compute $\sqrt{\boldsymbol{v}(j)}$ and scale \boldsymbol{v} to get \boldsymbol{j}-th column of \boldsymbol{G}.

Column Cholesky. Let $\boldsymbol{A}=\boldsymbol{G} \boldsymbol{G}^{T}$ with $\boldsymbol{G}=$ lower triangular. Then equate j-th columns:

$$
a(i, j)=\sum_{k=1}^{j} g(j, k) g^{T}(k, i) \rightarrow
$$

$$
\begin{aligned}
A(:, j) & =\sum_{k=1}^{j} G(j, k) G(:, k) \\
& =G(j, j) G(:, j)+\sum_{k=1}^{j-1} G(j, k) G(:, k) \rightarrow \\
G(j, j) G(:, j) & =A(:, j)-\sum_{k=1}^{j-1} G(j, k) G(:, k)
\end{aligned}
$$

6-10

ALGORITHM: 2. Column Cholesky

```
For \(j=1: n\) do
2. For \(k=1: j-1\) do
3. \(\quad A(j: n, j)=A(j: n, j)-A(j, k) * A(j: n, k)\)
4. EndDo
5. If \(A(j, j) \leq 0\) ExitError( "Matrix not SPD")
6. \(\quad A(j, j)=\sqrt{A(j, j)}\)
7. \(A(j+1: n, j)=A(j+1: n, j) / A(j, j)\)
8. EndDo
```

Try algorithm on:

$$
A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 5 & 0 \\
2 & 0 & 9
\end{array}\right)
$$

