Least-Squares Systems and The QR factorization

- Orthogonality
- Least-squares systems.
- The Gram-Schmidt and Modified Gram-Schmidt processes.
- The Householder QR and the Givens QR.

Orthogonality

1. Two vectors \boldsymbol{u} and \boldsymbol{v} are orthogonal if $(\boldsymbol{u}, \boldsymbol{v})=\mathbf{0}$.
2. A system of vectors $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ is orthogonal if $\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right)=\mathbf{0}$ for $\boldsymbol{i} \neq \boldsymbol{j}$; and orthonormal if $\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right)=\boldsymbol{\delta}_{i j}$
3. A matrix is orthogonal if its columns are orthonormal
$>$ Notation: $V=\left[v_{1}, \ldots, v_{n}\right]==$ matrix with column-vectors v_{1}, \ldots, v_{n}.
$>$ Orthogonality is essential in understanding and solving leastsquares problems.

Least-Squares systems

$>$ Given: an $\boldsymbol{m} \times \boldsymbol{n}$ matrix $\boldsymbol{n}<\boldsymbol{m}$. Problem: find \boldsymbol{x} which minimizes:

$$
\|b-A x\|_{2}
$$

> Good illustration: Data fitting.
Typical problem of data fitting: We seek an unknwon function as a linear combination ϕ of \boldsymbol{n} known functions ϕ_{i} (e.g. polynomials, trig. functions). Experimental data (not accurate) provides measures $\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{m}$ of this unknown function at points t_{1}, \ldots, t_{m}. Problem: find the 'best' possible approximation ϕ to this data.

$$
\phi(t)=\sum_{i=1}^{n} \xi_{i} \phi_{i}(t), \text { s.t. } \quad \phi\left(t_{j}\right) \approx \beta_{j}, j=1, \ldots, m
$$

> Question: Close in what sense?
$>$ Least-squares approximation: Find ϕ such that

$$
\phi(t)=\sum_{i=1}^{n} \xi_{i} \phi_{i}(t), \& \sum_{j=1}^{m}\left|\phi\left(t_{j}\right)-\beta_{j}\right|^{2}=\operatorname{Min}
$$

> In linear algebra terms: find 'best' approximation to a vector \boldsymbol{b} from linear combinations of vectors $f_{i}, i=1, \ldots, n$, where

$$
b=\left(\begin{array}{c}
\boldsymbol{\beta}_{1} \\
\boldsymbol{\beta}_{2} \\
\vdots \\
\boldsymbol{\beta}_{m}
\end{array}\right), \quad \boldsymbol{f}_{i}=\left(\begin{array}{c}
\phi_{i}\left(t_{1}\right) \\
\phi_{i}\left(t_{2}\right) \\
\vdots \\
\phi_{i}\left(t_{m}\right)
\end{array}\right)
$$

$>$ We want to find $x=\left\{\xi_{i}\right\}_{i=1, \ldots, n}$ such that

$$
\left\|\sum_{i=1}^{n} \xi_{i} f_{i}-b\right\|_{2} \quad \text { Minimum }
$$

Define

$$
F=\left[f_{1}, f_{2}, \ldots, f_{n}\right], \quad x=\left(\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right)
$$

$>$ We want to find \boldsymbol{x} to

$$
\operatorname{minimize}\|\boldsymbol{b}-\boldsymbol{F} \boldsymbol{x}\|_{2}
$$

$>$ This is a Least-squares linear system: \boldsymbol{F} is $\boldsymbol{m} \times \boldsymbol{n}$, with $\boldsymbol{m} \geq \boldsymbol{n}$.
Δ_{01} Formulate the least-squares system for the problem of finding the polynomial of degree 2 that approximates a function f which satisfies $f(-1)=-1 ; f(0)=1 ; f(1)=2 ; f(2)=0$

Solution: $\quad \phi_{1}(t)=1 ; \quad \phi_{2}(t)=t ; \quad \phi_{2}(t)=t^{2} ;$

- Evaluate the ϕ_{i} 's at points $t_{1}=-1 ; t_{2}=0 ; t_{3}=1 ; t_{4}=2$:

$$
f_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \quad f_{2}=\left(\begin{array}{c}
-1 \\
0 \\
1 \\
2
\end{array}\right) \quad f_{3}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
4
\end{array}\right)
$$

$>$ So the coefficients $\xi_{1}, \xi_{2}, \xi_{3}$ of the polynomial $\xi_{1}+\xi_{2} t+\xi_{3} t^{2}$ are the solution of the least-squares problem min $\|\boldsymbol{b}-\boldsymbol{F} \boldsymbol{x}\|$ where:

$$
F=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right) \quad b=\left(\begin{array}{c}
-1 \\
1 \\
2 \\
0
\end{array}\right)
$$

THEOREM. The vector \boldsymbol{x}_{*} mininizes $\boldsymbol{\psi}(\boldsymbol{x})=\|\boldsymbol{b}-\boldsymbol{F} \boldsymbol{x}\|_{2}^{2}$ if and only if it is the solution of the normal equations:

$$
\boldsymbol{F}^{T} \boldsymbol{F} \boldsymbol{x}=\boldsymbol{F}^{T} \boldsymbol{b}
$$

Proof: Expand out the formula for $\psi\left(\boldsymbol{x}_{*}+\delta \boldsymbol{x}\right)$:

$$
\begin{aligned}
& \psi\left(\boldsymbol{x}_{*}+\delta \boldsymbol{x}\right)=\left(\left(\boldsymbol{b}-\boldsymbol{F} \boldsymbol{x}_{*}\right)-\boldsymbol{F} \boldsymbol{\delta} \boldsymbol{x}\right)^{T}\left(\left(\boldsymbol{b}-\boldsymbol{F} \boldsymbol{x}_{*}\right)-\boldsymbol{F} \boldsymbol{\delta} \boldsymbol{x}\right) \\
& =\psi\left(\boldsymbol{x}_{*}\right)-2(\boldsymbol{F} \boldsymbol{\delta} \boldsymbol{x})^{T}\left(\boldsymbol{b}-\boldsymbol{F} \boldsymbol{x}_{*}\right)+(\boldsymbol{F} \boldsymbol{\delta} \boldsymbol{x})^{T}(\boldsymbol{F} \boldsymbol{\delta} \boldsymbol{x}) \\
& =\psi\left(\boldsymbol{x}_{*}\right)-2(\boldsymbol{\delta} \boldsymbol{x})^{T} \underbrace{\left[\boldsymbol{F}^{T}\left(\boldsymbol{b}-\boldsymbol{F} \boldsymbol{x}_{*}\right)\right]}_{-\nabla_{x} \psi}+\underbrace{(\boldsymbol{F} \boldsymbol{\delta} \boldsymbol{x})^{T}(\boldsymbol{F} \boldsymbol{\delta} \boldsymbol{x})}_{\text {always positive }}
\end{aligned}
$$

Can see that $\psi\left(\boldsymbol{x}_{*}+\boldsymbol{\delta} \boldsymbol{x}\right) \geq \boldsymbol{\psi}\left(\boldsymbol{x}_{*}\right)$ for any $\boldsymbol{\delta} \boldsymbol{x}$, iff the boxed quantity [the gradient vector] is zero. Q.E.D.

Illustration of theorem: \boldsymbol{x}^{*} is the best approximation to the vector \boldsymbol{b} from the subspace $\operatorname{span}\{\boldsymbol{F}\}$ if and only if $\boldsymbol{b}-\boldsymbol{F} \boldsymbol{x}^{*}$ is \perp to the whole subspace $\operatorname{span}\{\boldsymbol{F}\}$. This in turn is equivalent to $\boldsymbol{F}^{T}(\boldsymbol{b}-$ $\left.\boldsymbol{F} \boldsymbol{x}^{*}\right)=\mathbf{0}>$ Normal equations.

Example:

Points:	$t_{1}=-1$	$t_{2}=-1 / 2$	$t_{3}=0$	$t_{4}=1 / 2$	$t_{5}=1$
Values:	$\boldsymbol{\beta}_{1}=0.1$	$\beta_{2}=0.3$	$\beta_{3}=0.3$	$\boldsymbol{\beta}_{4}=0.2$	$\beta_{5}=0.0$

1) Approximations by polynomials of degree one:
$>\phi_{1}(t)=1, \phi_{2}(t)=t$.

$$
\boldsymbol{F}=\left(\begin{array}{cc}
1.0 & -1.0 \\
1.0 & -0.5 \\
1.0 & 0 \\
1.0 & 0.5 \\
1.0 & 1.0
\end{array}\right) \quad \boldsymbol{F}^{T} \boldsymbol{F}=\left(\begin{array}{cc}
5.0 & 0 \\
0 & 2.5
\end{array}\right)
$$

$>$ Best approximation is $\phi(t)=0.18-0.06 t$.

2) Approximation by polynomials of degree 2 :
$>\phi_{1}(t)=1, \phi_{2}(t)=t, \phi_{3}(t)=t^{2}$.
Best polynomial found:

$0.3085714285-0.06 \times t-0.2571428571 \times t^{2}$

Problem with Normal Equations

$>$ Condition number is high: if \boldsymbol{A} is square and non-singular, then

$$
\begin{aligned}
& \kappa_{2}(A)=\|A\|_{2} \cdot\left\|A^{-1}\right\|_{2}=\sigma_{\max } / \sigma_{\min } \\
& \kappa_{2}\left(A^{T} A\right)=\left\|A^{T} A\right\|_{2} \cdot\left\|\left(A^{T} A\right)^{-1}\right\|_{2}=\left(\sigma_{\max } / \sigma_{\min }\right)^{2}
\end{aligned}
$$

$>$ Example: Let $\boldsymbol{A}=\left(\begin{array}{ccc}1 & 1 & -\boldsymbol{\epsilon} \\ \epsilon & 0 & 1 \\ 0 & \epsilon & 1\end{array}\right)$.
$>$ Then $\kappa(A) \approx \sqrt{2} / \epsilon$, but $\kappa\left(A^{T} A\right) \approx 2 \epsilon^{-2}$.
$>f l\left(A^{T} A\right)=f l\left(\begin{array}{ccc}2+\epsilon^{2} & 1 & 0 \\ 1 & 1+\epsilon^{2} & 0 \\ 0 & 0 & 1+\epsilon^{2}\end{array}\right)=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$
is singular to working precision (if $\epsilon<\underline{\mathbf{u}}$).

Finding an orthonormal basis of a subspace

$>$ Goal: Find vector in $\operatorname{span}(\boldsymbol{X})$ closest to b.
> Much easier with an orthonormal basis for $\operatorname{span}(\boldsymbol{X})$.
Problem: Given $\boldsymbol{X}=\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right]$, compute $\boldsymbol{Q}=\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right]$ which has orthonormal columns and s.t. $\operatorname{span}(Q)=\operatorname{span}(X)$
$>$ Note: each column of \boldsymbol{X} must be a linear combination of certain columns of Q.
$>$ We will find \boldsymbol{Q} so that $\boldsymbol{x}_{j}(\boldsymbol{j}$ column of $\boldsymbol{X})$ is a linear combination of the first \boldsymbol{j} columns of \boldsymbol{Q}.

ALGORITHM : 1. Classical Gram-Schmidt

$$
\begin{aligned}
& \text { 1. For } \boldsymbol{j}=1, \ldots, n \text { Do: } \\
& \text { 2. Set } \hat{\boldsymbol{q}}:=\boldsymbol{x}_{j} \\
& \text { 3. Compute } \boldsymbol{r}_{i j}:=\left(\hat{\boldsymbol{q}}, \boldsymbol{q}_{i}\right) \text {, for } i=1, \ldots, j-1 \\
& \text { 4. For } i=1, \ldots, j-1 \text { Do: } \\
& \text { 5. Compute } \hat{\boldsymbol{q}}:=\hat{\boldsymbol{q}}-\boldsymbol{r}_{i j} \boldsymbol{q}_{i} \\
& \text { 6. EndDo } \\
& \text { 7. Compute } \boldsymbol{r}_{j j}:=\|\hat{\boldsymbol{q}}\|_{2} \text {, } \\
& \text { 8. If } \boldsymbol{r}_{j j}=0 \text { then Stop, else } \boldsymbol{q}_{j}:=\hat{\boldsymbol{q}} / \boldsymbol{r}_{j j} \\
& \text { 9. EndDo }
\end{aligned}
$$

$>$ All \boldsymbol{n} steps can be completed iff $x_{1}, x_{2}, \ldots, x_{n}$ are linearly independent. $\& \otimes_{2}$ Prove this result
$>$ Lines 5 and $7-8$ show that

$$
\boldsymbol{x}_{j}=\boldsymbol{r}_{1 j} \boldsymbol{q}_{1}+\boldsymbol{r}_{2 j} \boldsymbol{q}_{2}+\ldots+\boldsymbol{r}_{j j} \boldsymbol{q}_{j}
$$

$>$ If $\boldsymbol{X}=\left[x_{1}, x_{2}, \ldots, x_{n}\right], \boldsymbol{Q}=\left[\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots, \boldsymbol{q}_{n}\right]$, and if \boldsymbol{R} is the $\boldsymbol{n} \times \boldsymbol{n}$ upper triangular matrix

$$
\boldsymbol{R}=\left\{r_{i j}\right\}_{i, j=1, \ldots, n}
$$

then the above relation can be written as

$$
X=Q R
$$

$>\boldsymbol{R}$ is upper triangular, \boldsymbol{Q} is orthogonal. This is called the $Q R$ factorization of \boldsymbol{X}.
[03 What is the cost of the factorization when $\boldsymbol{X} \in \mathbb{R}^{m \times n}$?

Original Q is orthogonal matrix
 $\left(Q^{H} Q=I\right)$

Another decomposition:
A matrix \boldsymbol{X}, with linearly independent columns, is the product of an orthogonal matrix \boldsymbol{Q} and a upper triangular matrix \boldsymbol{R}.
> Better algorithm: Modified Gram-Schmidt.

ALGORITHM: 2. Modified Gram-Schmidt

1. For $j=1, \ldots, n$ Do:
2. Define $\hat{q}:=x_{j}$
3. For $i=1, \ldots, j-1$, Do:
4. $\quad r_{i j}:=\left(\hat{\boldsymbol{q}}, \boldsymbol{q}_{i}\right)$
5. $\quad \hat{q}:=\hat{q}-r_{i j} q_{i}$
6. EndDo
7. Compute $\boldsymbol{r}_{j j}:=\|\hat{q}\|_{2}$,
8. If $\boldsymbol{r}_{j j}=\mathbf{0}$ then Stop, else $\boldsymbol{q}_{j}:=\hat{\boldsymbol{q}} / \boldsymbol{r}_{j j}$
9. EndDo

Only difference: inner product uses the accumulated subsum instead of original $\hat{\boldsymbol{q}}$

The operations in lines 4 and 5 can be written as

$$
\hat{q}:=O R T H\left(\hat{q}, q_{i}\right)
$$

where $\operatorname{ORTH} \boldsymbol{H} \boldsymbol{x}, \boldsymbol{q})$ denotes the operation of orthogonalizing a vector \boldsymbol{x} against a unit vector \boldsymbol{q}.

Result of $\boldsymbol{z}=\boldsymbol{O R T H} \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{q})$
> Modified Gram-Schmidt algorithm is much more stable than classical Gram-Schmidt in general. [A few examples easily show this].

Suppose MGS is applied to \boldsymbol{A} yielding computed matrices $\hat{\boldsymbol{Q}}$ and $\hat{\boldsymbol{R}}$. Then there are constants $\boldsymbol{c}_{\boldsymbol{i}}$ (depending on $(\boldsymbol{m}, \boldsymbol{n})$) such that

$$
\begin{gathered}
A+E_{1}=\hat{Q} \hat{R} \quad\left\|E_{1}\right\|_{2} \leq c_{1} \underline{\mathbf{u}}\|A\|_{2} \\
\left\|\hat{Q}^{T} \hat{Q}-I\right\|_{2} \leq c_{2} \underline{\mathbf{u}} \kappa_{2}(A)+O\left(\left(\underline{\mathbf{u}} \kappa_{2}(A)\right)^{2}\right)
\end{gathered}
$$

for a certain perturbation matrix \boldsymbol{E}_{1}, and there exists an orthonormal matrix Q such that

$$
A+E_{2}=Q \hat{R} \quad\left\|E_{2}(:, j)\right\|_{2} \leq c_{3} \underline{\mathbf{u}}\|A(:, j)\|_{2}
$$

for a certain perturbation matrix \boldsymbol{E}_{2}.
> An equivalent version:

ALGORITHM : 3. Modified Gram-Schmidt - 2 -

0. Set $\hat{Q}:=X$
1. For $i=1, \ldots, n$ Do:
2. Compute $\boldsymbol{r}_{i i}:=\left\|\hat{\boldsymbol{q}}_{i}\right\|_{2}$,
3. If $\boldsymbol{r}_{i i}=\mathbf{0}$ then Stop, else $\boldsymbol{q}_{i}:=\hat{\boldsymbol{q}}_{i} / \boldsymbol{r}_{i i}$
4. For $\boldsymbol{j}=\boldsymbol{i}+1, \ldots, n$, Do:
5. $\quad \boldsymbol{r}_{i j}:=\left(\hat{q}_{j}, \boldsymbol{q}_{i}\right)$
6. $\quad \hat{q}_{j}:=\hat{q}_{j}-r_{i j} q_{i}$
7. EndDo
8. EndDo
> Does exactly the same computation as previous algorithm, but in a different order.

Example:

Orthonormalize the system of vectors:

$$
X=\left[x_{1}, x_{2}, x_{3}\right]=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & -1 \\
1 & 0 & 4
\end{array}\right)
$$

Answer:

$$
\begin{gathered}
q_{1}=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right) ; \quad \hat{\boldsymbol{q}}_{2}=x_{2}-\left(x_{2}, \boldsymbol{q}_{1}\right) \boldsymbol{q}_{1}=\left(\begin{array}{c}
1 \\
1 \\
0 \\
0
\end{array}\right)-1 \times\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right) \\
\hat{\boldsymbol{q}}_{2}=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right) ; \quad \boldsymbol{q}_{2}=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right)
\end{gathered}
$$

$$
\begin{gathered}
\hat{q}_{3}=x_{3}-\left(x_{3}, q_{1}\right) q_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
4
\end{array}\right)-2 \times\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-1 \\
-2 \\
3
\end{array}\right) \\
\hat{q}_{3}=\hat{q}_{3}-\left(\hat{q}_{3}, q_{2}\right) q_{2}=\left(\begin{array}{c}
0 \\
-1 \\
-2 \\
3
\end{array}\right)-(-1) \times\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
-2.5 \\
2.5
\end{array}\right) \\
\left\|\hat{q}_{3}\right\|_{2}=\sqrt{13} \rightarrow q_{3}=\frac{\hat{q}_{3}}{\left\|\hat{q}_{3}\right\|_{2}}=\frac{1}{\sqrt{13}}\left(\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
-2.5 \\
2.5
\end{array}\right)
\end{gathered}
$$

Δ_{4} For this example: what is Q ? what is R ? Compute $Q^{T} Q$.
$>$ Result is the identity matrix.
Recall: For any orthogonal matrix Q, we have

$$
Q^{T} Q=I
$$

(In complex case: $Q^{H} Q=I$).
Consequence: For an $n \times n$ orthogonal matrix $Q^{-1}=Q^{T}$ (Q is orthogonal/ unitary)

Application: another method for solving linear systems.

$$
A x=b
$$

\boldsymbol{A} is an $\boldsymbol{n} \times \boldsymbol{n}$ nonsingular matrix. Compute its QR factorization.
$>$ Multiply both sides by $Q^{T} \rightarrow Q^{T} Q R x=Q^{T} b \rightarrow$

$$
R x=Q^{T} b
$$

Method:
$>$ Compute the QR factorization of $\boldsymbol{A}, \boldsymbol{A}=\boldsymbol{Q R}$.
$>$ Solve the upper triangular system $\boldsymbol{R} \boldsymbol{x}=\boldsymbol{Q}^{T} \boldsymbol{b}$.
(0_{5} Cost??

Use of the $Q R$ factorization

Problem: $\boldsymbol{A} \boldsymbol{x} \approx \boldsymbol{b}$ in least-squares sense

\boldsymbol{A} is an $\boldsymbol{m} \times \boldsymbol{n}$ (full-rank) matrix. Let

$$
A=Q R
$$

the QR factorization of \boldsymbol{A} and consider the normal equations:

$$
\begin{gathered}
A^{T} A x=A^{T} b \rightarrow R^{T} Q^{T} Q R x=R^{T} Q^{T} b \rightarrow \\
\boldsymbol{R}^{T} \boldsymbol{R} x=\boldsymbol{R}^{T} Q^{T} b \rightarrow R x=Q^{T} b
\end{gathered}
$$

(\boldsymbol{R}^{T} is an $\boldsymbol{n} \times \boldsymbol{n}$ nonsingular matrix). Therefore,

$$
x=\boldsymbol{R}^{-1} Q^{T} b
$$

Another derivation:

$>$ Recall: $\operatorname{span}(Q)=\operatorname{span}(A)$
$>$ So $\|b-\boldsymbol{A x}\|_{2}$ is minimum when $\boldsymbol{b}-\boldsymbol{A x} \perp \operatorname{span}\{Q\}$
$>$ Therefore solution x must satisfy $Q^{T}(b-A x)=0 \rightarrow$

$$
Q^{T}(b-Q R x)=0 \rightarrow R x=Q^{T} b
$$

$$
x=R^{-1} Q^{T} b
$$

> Also observe that for any vector \boldsymbol{w}

$$
w=Q Q^{T} w+\left(I-Q Q^{T}\right) w
$$

and that $\boldsymbol{w}=Q Q^{T} \boldsymbol{w} \quad \perp \quad\left(\boldsymbol{I}-Q Q^{T}\right) \boldsymbol{w} \rightarrow$
$>$ Pythagoras theorem \longrightarrow

$$
\|w\|_{2}^{2}=\left\|Q Q^{T} w\right\|_{2}^{2}+\left\|\left(I-Q Q^{T}\right) w\right\|_{2}^{2}
$$

$$
\begin{aligned}
\|b-A x\|^{2} & =\|b-Q R x\|^{2} \\
& =\left\|\left(I-Q Q^{T}\right) b+Q\left(Q^{T} b-R x\right)\right\|^{2} \\
& =\left\|\left(I-Q Q^{T}\right) b\right\|^{2}+\left\|Q\left(Q^{T} b-R x\right)\right\|^{2} \\
& =\left\|\left(I-Q Q^{T}\right) b\right\|^{2}+\left\|Q^{T} b-R x\right\|^{2}
\end{aligned}
$$

> Min is reached when 2 nd term of r.h.s. is zero.

Method:

- Compute the QR factorization of $\boldsymbol{A}, \boldsymbol{A}=\boldsymbol{Q R}$.
- Compute the right-hand side $f=Q^{T} b$
- Solve the upper triangular system $R x=f$.
- \boldsymbol{x} is the least-squares solution
$>$ As a rule it is not a good idea to form $\boldsymbol{A}^{T} \boldsymbol{A}$ and solve the normal equations. Methods using the QR factorization are better.
Δ_{0} Total cost?? (depends on the algorithm used to get the QR decomposition).
Δ_{0} Using matlab find the parabola that fits the data in previous data fitting example (p. 8-10) in L.S. sense [verify that the result found is correct.]

