Householder $Q R$

> Householder reflectors are matrices of the form

$$
P=I-2 w w^{T}
$$

where \boldsymbol{w} is a unit vector (a vector of 2-norm unity)

${ }^{8-1}$

A few simple properties:

- For real $\boldsymbol{w}: \boldsymbol{P}$ is symmetric - It is also orthogonal $\left(\boldsymbol{P}^{T} \boldsymbol{P}=\boldsymbol{I}\right)$.
- In the complex case $\boldsymbol{P}=\boldsymbol{I}-\mathbf{2 w} \boldsymbol{w}^{\boldsymbol{H}}$ is Hermitian and unitary.
- P can be written as $P=I-\beta \boldsymbol{v} \boldsymbol{v}^{T}$ with $\beta=2 /\|\boldsymbol{v}\|_{2}^{2}$, where \boldsymbol{v} is a multiple of \boldsymbol{w}. [storage: \boldsymbol{v} and β]
- $\boldsymbol{P} \boldsymbol{x}$ can be evaluated $\boldsymbol{x}-\boldsymbol{\beta}\left(\boldsymbol{x}^{T} \boldsymbol{v}\right) \times \boldsymbol{v}$ (op count?)
- Similarly: $P A=A-v \boldsymbol{z}^{T}$ where $\boldsymbol{z}^{T}=\beta * \boldsymbol{v}^{T} * A$
$>$ NOTE: we work in \mathbb{R}^{m}, so all vectors are of length $\boldsymbol{m}, \boldsymbol{P}$ is of size $\boldsymbol{m} \times \boldsymbol{m}$, etc.
> Next: we will solve a problem that will provide the basic ingredient of the Householder QR factorization.

| $8-2$ |
| :---: | \qquad TB: 10,19; AB: 2.3.3;GvL 5.1 - HouQR

${ }^{8-2}$

Problem 1:
 Given a vector $\boldsymbol{x} \neq 0$, find \boldsymbol{w} such that

$$
\left(I-2 w w^{T}\right) x=\alpha e_{1}
$$

where $\boldsymbol{\alpha}$ is a (free) scalar.
Writing $\left(I-\beta v v^{T}\right) x=\alpha e_{1}$ yields $\beta\left(\boldsymbol{v}^{T} x\right) v=x-\alpha e_{1}$.
$>$ Desired \boldsymbol{w} is a multiple of

$$
v=x-\alpha e_{1}
$$

$x-\alpha e_{1}$, i.e., we can take :
$\left\|\left(\boldsymbol{I}-2 \boldsymbol{w} \boldsymbol{w}^{T}\right) x\right\|_{2}=\|x\|_{2}$
$>$ As a result: $|\alpha|=\|x\|_{2}$, or $\quad \alpha= \pm\|x\|_{2}$
> Should verify that both signs work, i.e., that in both cases we indeed get $\boldsymbol{P} \boldsymbol{x}=\boldsymbol{\alpha} \boldsymbol{e}_{1}$ [exercise]
Δ_{1}.. Show that $\left(I-\beta v v^{T}\right) x=\alpha e_{1}$ when $v=x-\alpha e_{1}$ and $\alpha= \pm\|x\|_{2}$.
Q: Which sign is best? To reduce cancellation, the resulting $x-\alpha e_{1}$ should not be small. So, $\alpha=-\operatorname{sign}\left(\xi_{1}\right)\|x\|_{2}$, where $\xi_{1}=e_{1}^{T} x$

$$
v=x+\operatorname{sign}\left(\xi_{1}\right)\|x\|_{2} e_{1} \text { and } \beta=2 /\|v\|_{2}^{2}
$$

$$
v=\left(\begin{array}{c}
\hat{\xi}_{1} \\
\xi_{2} \\
\vdots \\
\xi_{m-1} \\
\xi_{m}
\end{array}\right) \quad \text { with } \quad \hat{\xi}_{1}=\left\{\begin{array}{l}
\xi_{1}+\|x\|_{2} \text { if } \xi_{1}>0 \\
\xi_{1}-\|x\|_{2} \text { if } \xi_{1} \leq 0
\end{array}\right.
$$

$>\mathrm{OK}$, but will yield a negative multiple of e_{1} if $\xi_{1}>0$.

Alternative:

$>$ Define $\sigma=\sum_{i=2}^{m} \xi_{i}^{2}$.
$>$ Always set $\hat{\xi}_{1}=\xi_{1}-\|x\|_{2}$. Update OK when $\xi_{1} \leq 0$
$>$ When $\xi_{1}>0$ compute \hat{x}_{1} as

$$
\begin{aligned}
& \hat{\xi}_{1}=\xi_{1}-\|x\|_{2}=\frac{\xi_{1}^{2}-\|x\|_{2}^{2}}{\xi_{1}+\|x\|_{2}}=\frac{-\sigma}{\xi_{1}+\|x\|_{2}} \\
& \text { So: } \quad \hat{\xi}_{1}= \begin{cases}\frac{-\sigma}{\xi_{1}+\|x\|_{2}} & \text { if } \xi_{1}>0 \\
\xi_{1}-\|x\|_{2} & \text { if } \xi_{1} \leq 0\end{cases}
\end{aligned}
$$

$>$ It is customary to compute a vector v such that $v_{1}=1$. So v is scaled by its first component.
$>$ If $\sigma==0$, wll get $v=[1 ; x(2: m)]$ and $\beta=0$.
\qquad

Problem 2: Generalization.

Want to transform \boldsymbol{x} into $\boldsymbol{y}=\boldsymbol{P} \boldsymbol{x}$ where first \boldsymbol{k} components of \boldsymbol{x} and \boldsymbol{y} are the same and $\boldsymbol{y}_{\boldsymbol{j}}=\mathbf{0}$ for $\boldsymbol{j}>\boldsymbol{k}+\mathbf{1}$. In other words:

$$
\text { Problem 2: Given } x=\binom{x_{1}}{x_{2}}, x_{1} \in \mathbb{R}^{k}, x_{2} \in \mathbb{R}^{m-k},
$$

find: Householder transform $P=I-2 w \boldsymbol{w}^{T}$ such that:
$\boldsymbol{P} \boldsymbol{x}=\binom{x_{1}}{\alpha e_{1}}$ where $e_{1} \in \mathbb{R}^{m-k}$.
$>$ Solution $w=\binom{0}{\hat{w}}$, where \hat{w} is s.t. $\left(I-2 \hat{w} \hat{w}^{T}\right) x_{2}=\alpha e_{1}$
$>$ This is because:

$$
P=\left[\begin{array}{c|c}
I & 0 \\
\hline 0 & I-2 \hat{w} \hat{w}^{T}
\end{array}\right]
$$

Matlab function:

```
function [v,bet] = house (x)
```

$\% \%$ computes the householder vector for x
$\mathrm{m}=$ length (x);
$\mathrm{v}=[1$; $\mathrm{x}(2: \mathrm{m})]$;
sigma $=v(2: m)$ ' v(2:m);
if (sigma == 0)
bet $=0$;
else
xnrm $=\operatorname{sqrt}\left(x(1)^{\wedge} 2+\right.$ sigma $) ;$
if $(x(1)<=0)$
$\mathrm{v}(1)=\mathrm{x}(1)-\mathrm{xnrm}$;
else
$\mathrm{v}(1)=-$ sigma $/(\mathrm{x}(1)+\mathrm{xnrm})$;
end
bet $=2 /\left(1+\right.$ sigma $\left./ v(1)^{\wedge} 2\right)$;
$\mathrm{v}=\mathrm{v} / \mathrm{v}(1)$;
end
${ }^{8-6}$

Overall Procedure:

Given an $m \times n$ matrix X, find $w_{1}, w_{2}, \ldots, w_{n}$ such that

$$
\left(I-2 w_{n} w_{n}^{T}\right) \cdots\left(I-2 w_{2} w_{2}^{T}\right)\left(I-2 w_{1} w_{1}^{T}\right) X=R
$$

where $r_{i j}=0$ for $i>j$
$>$ First step is easy: select w_{1} so that the first column of \boldsymbol{X} becomes αe_{1}
$>$ Second step: select \boldsymbol{w}_{2} so that \boldsymbol{x}_{2} has zeros below 2 nd component.
$>$ etc.. After $\boldsymbol{k}-1$ steps: $\boldsymbol{X}_{\boldsymbol{k}} \equiv \boldsymbol{P}_{\boldsymbol{k}-1} \ldots \boldsymbol{P}_{1} \boldsymbol{X}$ has the following shape:

$$
\boldsymbol{X}_{k}=\left(\begin{array}{ccccccc}
x_{11} & x_{12} & x_{13} & \cdots & \cdots & \cdots & x_{1 n} \\
& x_{22} & x_{23} & \cdots & \cdots & \cdots & x_{2 n} \\
& & x_{33} & \cdots & \cdots & \cdots & x_{3 n} \\
& & & \cdots & \cdots & \cdots & \vdots \\
& & & & x_{k k} & \cdots & \vdots \\
& & & & x_{k+1, k} & \cdots & x_{k+1, n} \\
& & & & \vdots & \vdots & \vdots \\
& & & & x_{m, k} & \cdots & x_{m, n}
\end{array}\right)
$$

To do: transform this matrix into one which is upper triangular up to the \boldsymbol{k}-th column...
> ... while leaving the previous columns untouched.
\qquad
${ }^{8-9}$

ALGORITHM : 1. Householder QR

```
For \(k=1: n\) do
    \([v, \beta]=\operatorname{house}(X(k: m, k)\)
        \(X(k: m, k: n)=\left(I-\beta v v^{T}\right) X(k: m, k: n)\)
        If \((k<m)\)
            \(X(k+1: m, k)=v(2: m-k+1)\)
        end
    end
```

$>$ In the end:

$$
\boldsymbol{X}_{n}=\boldsymbol{P}_{n} \boldsymbol{P}_{n-1} \ldots \boldsymbol{P}_{1} \boldsymbol{X}=\text { upper triangular }
$$

To leave the first $\boldsymbol{k}-1$ columns unchanged \boldsymbol{w} must have zeros in positions 1 through $k-1$.

$$
P_{k}=I-2 w_{k} w_{k}^{T}, \quad w_{k}=\frac{v}{\|v\|_{2}},
$$

where the vector \boldsymbol{v} can be expressed as a Householder vector for a shorter vector using the matlab function house,

$$
v=\binom{0}{\operatorname{house}(X(k: m, k))}
$$

The result is that work is done on the $(k: m, k: n)$ submatrix.
\qquad
$8-10$

Yields the factorization:
 $$
X=Q R
$$

where:

$$
Q=P_{1} P_{2} \ldots P_{n} \text { and } R=X_{n}
$$

Example:
Apply to system of vectors:$\quad X=\left[x_{1}, x_{2}, x_{3}\right]=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & 4\end{array}\right)$.

Answer:

$$
x_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left\|x_{1}\right\|_{2}=2, v_{1}=\left(\begin{array}{c}
1+2 \\
1 \\
1 \\
1
\end{array}\right), w_{1}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{c}
1+2 \\
1 \\
1 \\
1
\end{array}\right)
$$

$P_{1}=I-2 w_{1} w_{1}^{T}=\frac{1}{6}\left(\begin{array}{lrrr}-3 & -3 & -3 & -3 \\ -3 & 5 & -1 & -1 \\ -3 & -1 & 5 & -1 \\ -3 & -1 & -1 & 5\end{array}\right)$,
$P_{1} X=\left(\begin{array}{ccc}-2 & -1 & -2 \\ 0 & 1 / 3 & -1 \\ 0 & -2 / 3 & -2 \\ 0 & -2 / 3 & 3\end{array}\right) \quad$ Next stage:
$\tilde{x}_{2}=\left(\begin{array}{c}0 \\ 1 / 3 \\ -2 / 3 \\ -2 / 3\end{array}\right),\left\|\tilde{x}_{2}\right\|_{2}=1, v_{2}=\left(\begin{array}{c}0 \\ 1 / 3+1 \\ -2 / 3 \\ -2 / 3\end{array}\right)$,
$P_{2}=I-\frac{2}{v_{2}^{T} v_{2}} v_{2} v_{2}^{T}=\frac{1}{3}\left(\begin{array}{rrrr}3 & 0 & 0 & 0 \\ 0 & -1 & 2 & 2 \\ 0 & 2 & 2 & -1 \\ 0 & 2 & -1 & 2\end{array}\right)$,
$P_{2} P_{1} X=\left(\begin{array}{ccc}-2 & -1 & -2 \\ 0 & -1 & 1 \\ 0 & 0 & -3 \\ 0 & 0 & 2\end{array}\right)$
Last stage:
$\tilde{x}_{3}=\left(\begin{array}{c}0 \\ 0 \\ -2 \\ 3\end{array}\right),\left\|\tilde{x}_{3}\right\|_{2}=\sqrt{13}, v_{1}=\left(\begin{array}{c}0 \\ 0 \\ -2-\sqrt{13} \\ 3\end{array}\right)$,
$P_{2}=I-\frac{2}{v_{3}^{T} v_{3}} v_{3} v_{3}^{T}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -.83205 & .55470 \\ 0 & 0 & .55470 & .83205\end{array}\right)$,
$P_{3} P_{2} P_{1} X=\left(\begin{array}{ccc}-2 & -1 & -2 \\ 0 & -1 & 1 \\ 0 & 0 & \sqrt{13} \\ 0 & 0 & 0\end{array}\right)=R$,
$P_{3} P_{2} P_{1}=\left(\begin{array}{rrrr}-.50000 & -.50000 & -.50000 & -.50000 \\ -.50000 & -.50000 & .50000 & .50000 \\ .13868 & -.13868 & -.69338 & .69338 \\ -.69338 & .69338 & -.13868 & .13868\end{array}\right)$
$>$ So we end up with the factorization
${ }^{8-14}$

End Example

MAJOR difference with Gram-Schmidt: \boldsymbol{Q} is $\boldsymbol{m} \times m$ and \boldsymbol{R} is $m \times n$ (same as \boldsymbol{X}). The matrix \boldsymbol{R} has zeros below the \boldsymbol{n}-th row. Note also : this factorization always exists.

Cost of Householder QR? Compare with Gram-Schmidt
Question:
How to obtain $X=Q_{1} R_{1}$ where $Q_{1}=$ same size as \boldsymbol{X} and \boldsymbol{R}_{1} is $\boldsymbol{n} \times \boldsymbol{n}$ (as in MGS)?

Answer:

$$
X=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{R_{1}}{0} \quad \rightarrow \quad X=Q_{1} R_{1}
$$

Referred to as the "thin" QR factorization (or "economy-size QR" factorization in matlab)
> How to solve a least-squares problem $\boldsymbol{A x}=\boldsymbol{b}$ using the Householder factorization?
$>$ Answer: no need to compute Q_{1}. Just apply Q^{T} to b.
> This entails applying the successive Householder reflections to b

Algorithm: At step \boldsymbol{k}, active matrix is $\boldsymbol{X}(\boldsymbol{k}: m, \boldsymbol{k}: n)$. Swap k-th column with column of largest 2-norm in $X(k: m, k: n)$. If all the columns have zero norm, stop.

The rank-deficient case

$>$ Result of Householder QR: Q_{1} and R_{1} such that $Q_{1} \boldsymbol{R}_{1}=X$. In the rank-deficient case, can have $\operatorname{span}\left\{Q_{1}\right\} \neq \operatorname{span}\{X\}$ because \boldsymbol{R}_{1} may be singular.
> Remedy: Householder QR with column pivoting. Result will be:

$$
A \Pi=Q\left(\begin{array}{cc}
R_{11} & R_{12} \\
0 & 0
\end{array}\right)
$$

$>\boldsymbol{R}_{11}$ is nonsingular. So $\operatorname{rank}(\boldsymbol{X})=\operatorname{size}$ of $\boldsymbol{R}_{11}=\operatorname{rank}\left(\boldsymbol{Q}_{1}\right)$ and Q_{1} and \boldsymbol{X} span the same subspace.
$>\boldsymbol{\Pi}$ permutes columns of \boldsymbol{X}.
${ }^{8-18}$ TB: 10,19; AB: 2.3.3;GvL 5.1 - HouQR
$8-18$

Practical Question: How to implement this ???

Δ_{3} Suppose you know the norms of each column of \boldsymbol{X} at the start. What happens to each of the norms of $X(2: m, j)$ for $j=2, \cdots, n$? Generalize this to step k and obtain a procedure to inexpensively compute the desired norms at each step.

Properties of the $Q R$ factorization

Consider the 'thin' factorization $\boldsymbol{A}=\boldsymbol{Q R}$, $(\operatorname{size}(\boldsymbol{Q})=[\mathrm{m}, \mathrm{n}]=$ size $(A))$. Assume $r_{i i}>0, i=1, \ldots, n$

1. When \boldsymbol{A} is of full column rank this factorization exists and is unique
2. It satisfies:

$$
\operatorname{span}\left\{a_{1}, \cdots, a_{k}\right\}=\operatorname{span}\left\{q_{1}, \cdots, q_{k}\right\}, \quad k=1, \ldots, n
$$

3. \boldsymbol{R} is identical with the Cholesky factor \boldsymbol{G}^{T} of $\boldsymbol{A}^{T} \boldsymbol{A}$.
$>$ When \boldsymbol{A} in rank-deficient and Householder with pivoting is used, then

$$
\operatorname{Ran}\left\{Q_{1}\right\}=\operatorname{Ran}\{A\}
$$

${ }^{8-21}$ TB: 10,19; AB: 2.3.3;GvL 5.1 - HouQR

Main idea of Givens rotations consider $\boldsymbol{y}=\boldsymbol{G} \boldsymbol{x}$ then

$$
\begin{aligned}
& y_{i}=c * x_{i}+s * x_{k} \\
& y_{k}=-s * x_{i}+c * x_{k} \\
& y_{j}=x_{j} \quad \text { for } \quad j \neq i, k
\end{aligned}
$$

$>$ Can make $\boldsymbol{y}_{k}=0$ by selecting

$$
s=x_{k} / t ; \quad c=x_{i} / t ; \quad t=\sqrt{x_{i}^{2}+x_{k}^{2}}
$$

> This is used to introduce zeros in the first column of a matrix \boldsymbol{A} (for example $G(m-1, m), G(m-2, m-1)$ etc.. $G(1,2)$)..

Givens Rotations

$>$ Matrices of the form

$$
G(i, k, \theta)=\left(\begin{array}{ccccccc}
1 & \ldots & 0 & & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & c & \cdots & s & \cdots & 0 \\
\vdots & \cdots & \vdots & \cdots & \vdots & \vdots & \vdots \\
0 & \cdots & -s & \cdots & c & \cdots & 0 \\
\vdots & \cdots & \vdots & \cdots & \vdots & \cdots & \vdots \\
0 & \cdots & 0 & & \cdots & & 1
\end{array}\right) k
$$

with $c=\cos \theta$ and $s=\sin \theta$
$>$ represents a rotation in the span of e_{i} and e_{k}.
\qquad

