Solution of System
$$\begin{pmatrix} 5 & 10 & 25 \\ 1 & 1 & 1 \\ 0 & 10 & 25 \end{pmatrix} \begin{pmatrix} x_n \\ x_d \\ x_q \end{pmatrix} = \begin{pmatrix} 145 \\ 12 \\ 125 \end{pmatrix}$$

Solution: You will find: $x_n = 4$, $x_d = 5$, $x_q = 3$.

$$oxed{oxed} (A^T)^T = ??$$
 Solution: $(A^T)^T = A$

$$(AB)^T = ??$$
 Solution: $(AB)^T = B^T A^T$

Solution:
$$(A^H)^H = ??$$

Solution:
$$(A^H)^T = ??$$

$$(ABC)^T = ??$$
 Solution: $(ABC)^T = C^TB^TA^T$

True/False:
$$(AB)C = A(BC)$$
 Solution: o True

🔼 9 True/False: AB = BA

Solution: \rightarrow *false*

10 True/False: $AA^T = A^TA$

Solution: \rightarrow *false in general*

∠ 12 Complexity? [number of multiplications and additions for matrix multiply]

Solution: Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Then the product AB requires 2mnp operations (there are mp entries in all and each of them requires 2n operations).

 $ilde{m M}$ 13 What happens to these 3 different approches to matrix-matrix multiplication when m B has one column (p=1)?

Solution: In the first: $C_{:,j}$ the j=th column of C is a linear combination of the columns of A. This is the usual matrix-vector product.

In the second: $C_{i,:}$ is just a number which is the inner product of the ith row of A with the column B.

The 3rd formula will give the exact same expression as the first.

Solution: When $A \in \mathbb{R}^{n \times 1}$ then AA^T is a rank-one $n \times n$ matrix and A^TA is a scalar: the inner product of the column A with itself.

$$A = uv^T$$
.

What are the eigenvalues and eigenvectors of A?

Solution: (a)

 \leftarrow First we show that: When both u and v are nonzero vectors then the rank of a matrix of the matrix $A=uv^T$ is one. The range of A is the set of all vectors of the form

$$y = Ax = uv^Tx = (v^Tx)u$$

since u is a nonzero vector, and not all vectors v^Tx are zero (because v
eq 0) then this space is

of dimension 1.

o Next we show that: If A is of rank one than there exist nonzero vectors u,v such that $A=uv^T$. If A is of rank one, then $Ran(A)=Span\{u\}$ for some nonzero vector u. So for every vector x, the vector Ax is a multiple of u. Let e_1,e_2,\cdots,e_n the vectors of the canonical basis of \mathbb{R}^n and let ν_1,ν_2,\cdots,ν_n the scalars such that $Ae_i=\nu_i u$. Define $v=[\nu_1,\nu_2,\cdots,\nu_n]^T$. Then $A=uv^T$ because the matrices A and uv^T have the same columns. (Note that the j-th column of A is the vector Ae_j). In addition, $v\neq 0$ otherwise A=0 which would be a contradiction because rank(A)=1.

(b) Eigenvalues /vectors

Write $Ax=\lambda x$ then notice that this means $(v^Tx)u=\lambda x$ so either $v^Tx=0$ and $\lambda=0$ or x=u and $\lambda=v^Tu$. Two eigenvalues: 0 and $v^Tx...$

$$rank(A) = rank(\bar{A}) = rank(A^T) = rank(A^H) ?$$

Solution:

The answer is yes and it follows from the fact that the ranks of A and A^T are the same and the ranks of A and \bar{A} are also the same.

It is known that $rank(A) = rank(A^T)$. We now compare the ranks of A and \bar{A} (everything is considered to be complex).

The important property that is used is that if a set of vectors is linearly independent then so is its conjugate. [convince yourself of this by looking at material from 2033]. If A has rank r and for example its first r columns are the basis of the range, the the same r columns of \bar{A} are also linearly independent. So $rank(\bar{A}) \geq rank(A)$. Now you can use a similar argument to show that $rank(A) \geq rank(\bar{A})$. Therefore the ranks are the same.

🔼 21 Eigenvalues of two similar matrices $m{A}$ and $m{B}$ are the same. What about eigenvectors?

Solution: If $Au=\lambda u$ then $XBX^{-1}u=\lambda u\to B(X^{-1}u)=\lambda(X^{-1}u)\to\lambda$ is an eigenvalue of B with eigenvector $X^{-1}u$ (note the vector $X^{-1}u$ cannot be equal to zero because $u\neq 0$.)

🔼 22 Given a polynomial p(t) how would you define p(A)?

Solution: If $p(t) = lpha_0 + lpha_1 t + lpha_2 t^2 + \cdots + lpha_k t^k$ then

$$p(A) = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \cdots + \alpha_k A^k$$

where

$$A^{j} = \underbrace{A \times A \times \cdots \times A}_{j \text{ times}}$$

Given a function f(t) (e.g., e^t) how would you define f(A)? [You may limit yourself to the case when A is diagonalizable]

Solution: The easiest way would be through the Taylor series expansion..

$$f(A) = f(0)I + rac{f'(0)}{1!}A + rac{f''(0)}{2!}A^2 \cdots rac{f^{(k)}(0)}{k!}A^k + \cdots$$

However, this will require a justification: Will this expression 'converge' as the number of terms goes to infinity? This is where norms are useful. We will revisit this in next set.

 $\triangle 24$ If A is nonsingular what are the eigenvalues/eigenvectors of A^{-1} ?

Solution: Assume that $Au = \lambda u$. Multiply both sides by the inverse of A: $u = \lambda A^{-1}u$ - then by the inverse of λ : $\lambda^{-1}u = A^{-1}u$. Therefore, $1/\lambda$ is an eigenvalue and u is an associated eigenvector.

Solution: Assume that $Au=\lambda u$. Multiply both sides by A and repeate k times. You will get $A^ku=\lambda^ku$. Therefore, λ^k is an eigenvalue of A^k and u is an associated eigenvector.

 Solution: Using the previous result you can show that $p(\lambda)$ is an eigenvalue of p(A) and u is an associated eigenvector.

🔼 27 What are the eigenvalues/eigenvectors of $m{f}(m{A})$ for a function $m{f}$? [Diagonalizable case]

Solution: This will require using the diagonalized form of A: $A = XDX^{-1}$. With this $f(A) = Xf(D)X^{-1}$. It becomes clear that the eigenvalues are the diagonal entries of f(D), i.e., the values $f(\lambda_i)$ for $i = 1, \dots, n$. As for the eigenvectors - recall that they are the columns of the X matrix in the diagonalized form – And X is the same for A and f(A). So the eigenvectors are the same.

🔼 28 For two n imes n matrices A and B are the eigenvalues of AB and BA the same?

Solution: We will show that if λ is an eigenvalue of AB then it is also an eigenvalue of BA. Assume that $ABu = \lambda u$ and multiply both sides by B. Then $BABu = \lambda Bu$ — which we write in the form: $BAv = \lambda v$ where v = Bu. In the situation when $v \neq 0$, we clearly see that λ is a nonzero eigenvalue of BA with the associated eigenvector v. We now deal with the case when v = 0. In this case, since $ABu = \lambda u$, and $u \neq 0$ we must have $\lambda = 0$. However,

clearly $\lambda=0$ is also an eigenvalue of BA because $\det(BA)=\det(AB)=0$.

We can similarly show that any eigenvalue of BA are also eigenvalues of AB by interchanging the roles of A and B. This completes the proof

Solution: Trace is 2, determinant is -3. Eigenvalues are 3, -1 so $\rho(A) = 3$.

<u>▶ 31</u> What is the inverse of a unitary (complex) or orthogonal (real) matrix?

Solution: If Q is unitary then $Q^{-1} = Q^H$.

<u>△32</u> What can you say about the diagonal entries of a skew-symmetric (real) matrix?

Solution: They must be equal to zero.

<u>▲ 33</u> What can you say about the diagonal entries of a Hermitian (complex) matrix?

Solution: We must have $a_{ii}=\bar{a}_{ii}$. Therefore a_{ii} must be real.

<u>△34</u> What can you say about the diagonal entries of a skew-Hermitian (complex) matrix?

Solution: We must have $a_{ii}=-\bar{a}_{ii}$. Therefore a_{ii} must be purely imaginary.

₩35 Which matrices of the following type are also normal: real symmetric, real skew-symmetric, Hermitian, skew-Hermitian, complex symmetric, complex skew-symmetric matrices.

Solution: Real symmetric, real skew-symmetric, Hermitian, skew-Hermitian matrices are normal. Complex symmetric, complex skew-symmetric matrices are not necessarily normal.

Solution: If $a=[a_0,a_2,\cdots,a_n]$ and p(t) is the n-th degree polymomial:

$$p(t)=a_0+a_1t+a_2t^2+\cdots a_nt^n$$

then Va is a vector whose components are the values $p(x_0), p(x_1), \cdots, p(x_n)$. \Box

Interpret the solution of the linear system Va=y where a is the unknown. Sketch a 'fast' solution method based on this.

Solution: Given the previous exercise, the interpretation is that we are seeking a polynomial of degree n whose values at x_0, \dots, x_n are the components of the vector y, i.e., y_0, y_1, \dots, y_n . This is known as polynomial interpolation (see csci 5302). The polynomial can be determined by, e.g., the Newton table in $O(n^2)$ operations.