Unitary matrices preserve the 2-norm.

Solution: The proof takes only one line if we use the result $(Ax,y)=(x,A^Hy)$:

$$\|Qx\|_2^2 = (Qx,Qx) = (x,Q^HQx) = (x,x) = \|x\|_2^2.$$

✓ 3 When do we have equality in Cauchy-Schwarz?

Solution: From the proof of Cauchy-Schwarz it can be seen that we have equality when $x=\lambda y$, i.e., when they are colinear. \square

Solution: You will see that you can derive the triangle inequality from this expansion and the Cauchy-Schwarz inequality. \Box .

• Proof of the Hölder inequality.

$$|(x,y)| \leq \|x\|_p \|y\|_q \;,$$
 with $rac{1}{p} + rac{1}{q} = 1$

Proof: For any z_i, v_i all nonnegative we have, setting $\zeta = \sum z_i$,

$$egin{aligned} \left(\sum (z_i/\zeta)v_i
ight)^p & \leq \sum (z_i/\zeta)v_i^p \ (ext{convexity})
ightarrow \ \left(\sum z_iv_i
ight)^p & \leq \left[\sum (z_i/\zeta)v_i^p
ight]\zeta^p = \left[\sum z_iv_i^p
ight]\zeta^{p-1}
ightarrow \ \sum z_iv_i & \leq \left[\sum z_iv_i^p
ight]^{1/p}\zeta^{(p-1)/p} \ \sum z_iv_i & \leq \left[\sum z_iv_i^p
ight]^{1/p}\left[\sum z_i
ight]^{1/q} \end{aligned}$$

Now take $z_i = x_i^q$, and $v_i = y_i * x_i^{1-q}$. Then $z_i v_i = x_i y_i$ and:

$$z_i v_i^p = x_i^q * (y_i * x_i^{1-q})^p = y_i^p * x_i^{q+p-pq} = y_i^p * x_i^0 == y_i^p \quad \Box$$

≤ Second triangle inequality.

Solution: Start by invoking the triangle inequality to write:

$$\|x\| = \|(x-y) + y\| \le \|x-y\| + \|y\| \to \|x\| - \|y\| \le \|x-y\|$$

Next exchange the roles of x and y:

$$\|y\|-\|x\|\leq \|y-x\|=\|x-y\|$$

The two inequalities $\|x\|-\|y\|\leq \|x-y\|$ and $\|y\|-\|x\|\leq \|x-y\|$ yield the result since they imply that

$$-\|x-y\| \le \|x\| - \|y\| \le \|x-y\|$$

Consider the metric $d(x,y)=max_i|x_i-y_i|$. Show that any norm in \mathbb{R}^n is a continuous function with respect to this metric.

Solution: We need to show that we can make $\|y\|$ arbitrarily close to $\|x\|$ by making y 'close' enough to x, where 'close' is measured in terms of the infinity norm distance $d(x,y) = \|x-y\|_{\infty}$. Define u = x - y and write u in the canonical basis as $u = \sum_{i=1}^n \delta_i e_i$. Then:

$$\|u\| = \|\sum_{i=1}^n \delta_i e_i\| \leq \sum_{i=1}^n |\delta_i| \ \|e_i\| \leq \max |\delta_i| \sum_{i=1}^n \|e_i\|$$

Setting
$$M = \sum_{i=1}^n \|e_i\|$$
 we get $\|u\| \leq M \max |\delta_i| = M \|x-y\|_\infty$

Let ϵ be given and take x,y such that $\|x-y\|_{\infty} \leq \frac{\epsilon}{M}$. Then, by using the second triangle inequality we obtain:

$$\| \|x\| - \|y\| \| \leq \|x-y\| \leq M \max \delta_i \leq M rac{\epsilon}{M} = \epsilon.$$

This means that we can make $\|y\|$ arbitrarily close to $\|x\|$ by making y close enough to x in the sense of the defined metric. Therefore ||•|| is continuous.

<u> $tilde{m}$ 7 In \mathbb{R}^n (or \mathbb{C}^n) all norms are equivalent.</u>

Solution: We will do it for $\phi_1=\|.\|$ some norm, and $\phi_2=\|.\|_\infty$ [and one can see that all other cases will follow from this one].

1. Need to show that for some lpha we have $\|x\| \leq lpha \|x\|_{\infty}$. Express x in the canonical basis of

 \mathbb{R}^n as $x = \sum x_i e_i$ [look up canonical basis e_i from your csci2033 class.] Then

$$\|x\| = \|\sum x_i e_i\| \leq \sum |x_i| \|e_i\| \leq \max |x_i| \sum \|e_i\| = \|x\|_\infty lpha$$

where $lpha = \sum \|e_i\|$.

2. We need to show that there is a β such that $\|x\| \geq \beta \|x\|_{\infty}$. Assume $x \neq 0$ and consider $u = x/\|x\|_{\infty}$. Note that u has infinity norm equal to one. Therefore it belongs to the closed and bounded set $S_{\infty} = \{v | \|v\|_{\infty} = 1\}$. Since norms are continuous (seen earlier), the minimum of the norm $\|u\|$ for all u's in S_{∞} is reached, i.e., there is a $u_0 \in S_{\infty}$ such that

$$\min_{u \in S_{\infty}} \|u\| = \|u_0\|.$$

Let us call eta this minimum value, i.e., $\|u_0\|=eta$. Note in passing that eta cannot be equal to zero otherwise $u_0=0$ which would contradict the fact that u_0 belongs to S_∞ [all vectors in S_∞ have infinity norm equal to one.] The result follows because $u=x/\|x\|_\infty$, and so, remembering that $u=x/\|x\|_\infty$, we obtain

$$\left\| rac{x}{\|x\|_{\infty}}
ight\| \geq eta
ightarrow \|x\| \geq eta \|x\|_{\infty}$$

This completes the proof

Show that for any
$$x$$
: $\frac{1}{\sqrt{n}} \|x\|_1 \leq \|x\|_2 \leq \|x\|_1$

Solution: For the right inequality, it is easy to see that $\|x\|_2 \leq \|x\|_1$ because $\sum_i x_i^2 \leq [\sum_i |x_i|]^2$

For the left inequality, we rely on Cauchy-Schwarz. If we call ${f 1}$ the vector of all ones, then:

$$\|x\|_1 = \sum_i |x_i|.1 \leq \|x\|_2 \|One\|_2 = \sqrt{n} \|x\|_2 \|$$

<u>14</u> Show that $ho(A) \leq \|A\|$ for any matrix norm.

Solution: Let λ be the largest (in modulus) eigenvalue of A with associated eigenvector u. Then

$$Au=\lambda u
ightarrow rac{\|Au\|}{\|u\|}=|\lambda|=
ho(A)$$

This implies that

$$\rho(A) \leq \max_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \|A\|$$

Given a function f(t) (e.g., e^t) how would you define f(A)? [You may limit yourself to the case when A is diagonalizable]

Solution: The easiest way would be through the Taylor series expansion..

$$f(A) = f(0)I + rac{f'(0)}{1!}A + rac{f''(0)}{2!}A^2 \cdots rac{f^{(k)}(0)}{k!}A^k + \cdots$$

However, this will require a justification: Will this expression 'converge' as the number of terms goes to infinity? This is where norms are useful.

In the simplest case where A is diagonalizable you can write $A = XDX^{-1}$ and then consider the k-term part of the Taylor series expression above:

$$egin{array}{lll} F_k &=& f(0)I + rac{f'(0)}{1!}A + rac{f''(0)}{2!}A^2 + \cdots + rac{f^{(k)}(0)}{k!}A^k \ &=& X \left[f(0)I + rac{f'(0)}{1!}D + rac{f''(0)}{2!}D^2 + \cdots + rac{f^{(k)}(0)}{k!}D^k
ight] X^{-1} \ &\equiv& X D_k X^{-1} \end{array}$$

where D_k is the matrix inside the brackets in line 2 of above equations. The i-th diagonal entry of D_k is of the form

$$f_k(\lambda_i) = f(0) + rac{f'(0)}{1!} \lambda_i + rac{f''(0)}{2!} \lambda_i^2 + \dots + rac{f^{(k)}(0)}{k!} \lambda_i^k,$$

which is just the k-term part of the Taylor series expansion of $f(\lambda_i)$. Each of these will converge to $f(\lambda_i)$. Now it is easy to complete the argument. If we call D_f the diagonal matrix whose ith diagonal entry is $f(\lambda_i)$ and f_A the matrix defined by

$$f_A = X D_f X^{-1},$$

then clearly

$$\|F_k - F_A\|_2 = \|X(D_k - D_A)X^{-1}\|_2 \le \|X\|_2 \|X^{-1}\|_2 \|D_k - D_A\|_2$$

$$\le \|X\|_2 \|X^{-1}\|_2 \max_i |f_k(\lambda_i) - f(\lambda_i)|$$

which converges to zero as k goes to infinity.

<u>17</u> The eigenvalues of A^HA and AA^H are real nonnegative.

Solution: Let us show it for A^HA [the other case is similar] If λ, u is an eigenpair of A^HA then $(A^HA)u = \lambda u$. Take inner products with u on both sides. Then:

$$oldsymbol{\lambda}(u,u) = ((A^HA)u,u) = (Au,Au) = \|Au\|^2$$

Therefore, $\lambda = \|Au\|^2/\|u\|^2$ which is a real nonnegative number. \square

[Note: 1) Observe how simple the proof is for such an important fact. It is based on the result $(Ax,y)=(x,A^Hy)$. 2) The singular values of A are the square roots of the eigenvalues of A^HA if $m\geq n$ or those of the eigenvalues of AA^H if m< n. So there are always $\min(m,n)$ singular values. This is really just a preliminary definition as we need to refer to singular values

often - but we will see singular values and the singular value decomposition in great detail later.]

🔼 18 Prove that when $A=uv^T$ then $\|A\|_2=\|u\|_2\|v\|_2$.

Solution: We start by dealing with the eigenvalues of an arbitrary matrix of the form $A=uv^T$ where both u and v are in \mathbb{R}^n . From $Ax=\lambda x$ we get:

$$uv^Tx = \lambda x \rightarrow (v^Tx)u = \lambda x$$

Notice that we did this because v^Tx is a scalar. We have 2 cases.

Case 1: $v^Tx=0$. In this case it is clear that the equation $Ax=\lambda x$ is satisfied with $\lambda=0$. So any vector that is orthogonal to v is an eigenvector of A associated with the eigenvalue $\lambda=0$. (It can be shown that the eigenvalue 0 is of multiplicity n-1).

Case 2: $v^T x \neq 0$. In this case it is clear that the equation $Ax = \lambda x$ is satisfied with $\lambda = v^T u$ and x = u. So u is an eigenvector of A associated with the eigenvalue $v^T x$.

In summary the matrix uv^T has only two eigenvalues: 0, and v^Tu .

Going back to the original question, we consider now $A=uv^T$ and we are interested in the 2-norm of A. We have

$$\|A\|_2^2 =
ho(A^TA) =
ho(vu^Tuv^T) = \|u\|_2^2
ho(vv^T) = \|u\|_2^2\|v\|_2^2.$$

The last relation comes from what was done above to determine the eigenvalues of vv^T . So in the end, $\|A\|_2 = \|u\|_2 \|v\|_2$.

Solution: Only the last part of the above answer changes (ρ is replaced by Tr) and you will find that actually the Frobenius norm of uv^T is again equal to $||u||_2||v||_2$.

Proof of Cauchy-Schwarz inequality:

$$|(x,y)|^2 \le (x,x) (y,y).$$
 (1)

Proof: We begin by expanding $(x-\lambda y,x-\lambda y)$ using properties of inner products:

$$(x-\lambda y,x-\lambda y)=(x,x)-ar{\lambda}(x,y)-\lambda(y,x)+|\lambda|^2(y,y).$$

If y=0 then the inequality is trivially satisfied. Assume that y
eq 0 and take $\lambda = (x,y)/(y,y)$.

Then, from the above equality, $(x-\lambda y,x-\lambda y)\geq 0$ shows that

$$egin{align} 0 & \leq (x - \lambda y, x - \lambda y) \ = \ (x, x) - 2 rac{|(x, y)|^2}{(y, y)} + rac{|(x, y)|^2}{(y, y)} \ & = \ (x, x) - rac{|(x, y)|^2}{(y, y)}, \end{split}$$

which yields the result.