2 Prove that Gram-Schmidt can be completed iff the \boldsymbol{x}_{i} 's are linearly independent.

Solution:

We will show that Gram-Schmidt breaks down iff the $\boldsymbol{x}_{\boldsymbol{i}}$'s are linearly dependent.

The only way in which GS can break down is if $\boldsymbol{r}_{j j}=\|\hat{\boldsymbol{q}}\|_{2}$ in line 7 is zero.

The main observation is that the vector $\hat{\boldsymbol{q}}$ at the end of the loop starting in line 4 (ending in line 6) is a linear combination of the \boldsymbol{x}_{i} 's for $\boldsymbol{i}=1, \cdots, j-1$. [simple proof by induction - omitted.] \square
\& 3 Cost of Gram-Schmidt?

Solution: Step j of the algorithm costs : $(j-1) \times 2 m$ operations for line $3,+(j-1) \times 2 m$ operations for loop in line $4+\mathbf{3 m}$ operations in Lines 7 and 8 together. Total for step $\boldsymbol{j}=$
$c_{j}=(4 j-1) m$. Total over the n columns $=T(n)=\left(2 n^{2}+n\right) m \approx 2 n^{2} m$.

Note: this is linear in \boldsymbol{m} (number of rows) and quadratic in \boldsymbol{n} (number of columns).
$\Delta_{0} 5$ What is the cost of solving a linear system with the $Q R$ factorization?

Solution: According to the previous question we have a cost of $2 n^{3}$ for the factorization (since $\boldsymbol{m}=\boldsymbol{n})$, to which we need to add the cost of solving a triangular solve $O\left(n^{2}\right)$ and the cost for computing $Q^{T} b$ which is again $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$. In the end the cost is dominated by the $Q R$ factorization which is $2 \boldsymbol{n}^{3}$. This is 3 times more expensive than $G E . \square$

