🔼 1 How would you get an orthonormal basis of X?

Solution: Just take any basis and orthonormalize it with Gram-Schmidt of Householder QR.

Show how you can get a decomposition in which C is lower (or upper) triangular, from the above factorization.

Solution: You first get any factorization in the form shown in Page 9-7 – Then to get an upper triangular C you use the QR factorization C = QR. Then U is replaced by

$$egin{aligned} oldsymbol{U}_{new} &= oldsymbol{U} imes egin{pmatrix} oldsymbol{Q} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{I} \end{pmatrix} \end{aligned}$$

and C is replaced by R. To get a lower triangular C you can use the same trick applied to A^T and transpose the final result.

△3 How can you get the ULV decomposition by using only the Householder QR factorization

(possibly with pivoting)?

Solution: You first get the Householder QR factorization $A=Q_1R_1$ of the matrix A. The second step is to perform a Householder QR factorization of the matrix R_1^T , so you will get: $R_1^T=Q_2R_2$. The final step is to write:

$$A = Q_1 * R_2^T * Q_2^T \equiv URV^T$$

where
$$U=Q_1 \;\in\; \mathbb{R}^{m imes m}$$
 ; $V=Q_2 \;\in\; \mathbb{R}^{n imes n}$; $R=R_2 \in \mathbb{R}^{m imes n}$ \square

🔼 In the proof of the SVD decomposition, define $oldsymbol{U,V}$ as single Householder reflectors.

Solution: We deal with U only [proceed similarly with V]. We need a matrix $P = I - 2ww^T$ such that the first column of A is u_1 and all columns are orthonormal. The second requirement is satisfied by default since P is unitary. Note that if P is available we will have $Pu_1 = e_1$ because $P^2 = I$. Therefore, the wanted w is simply the vector that transforms the vector u_1 into αe_1

 $ilde{m{\omega}}$ 5 $extstyle{m{5}}$ How can you obtain the thin SVD from the QR factorization of $m{A}$ and the SVD of an $m{n} imes m{n}$

matrix?

Solution: We first get the thin QR factorization of A, namely A=QR where $Q\in\mathbb{R}^{m\times n}$ and $R\in\mathbb{R}^{n\times n}$; Then we can get the SVD $R=U_R\Sigma V_R^T$ of R and this yields:

$$A = Q imes U_R \Sigma_R V_R^T o A = U \Sigma V^T, \quad ext{with} \quad U = Q imes U_R; \quad \Sigma = \Sigma_R; \quad V = V_R.$$