
THE SINGULAR VALUE DECOMPOSITION (Cont.)

• The Pseudo-inverse

• Use of SVD for least-squares problems

• Application to regularization

• Numerical rank
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Pseudo-inverse of an arbitrary matrix

ä Let A = UΣV T which we rewrite as

A =
(
U1 U2

) (Σ1 0
0 0

)(
V T

1

V T
2

)
= U1Σ1V

T
1

Then the pseudo in-
verse of A is

A† = V1Σ
−1
1 UT

1 =

r∑
j=1

1

σj
vju

T
j

ä The pseudo-inverse of A is the mapping from a vector b to the
solution minx ‖Ax− b‖2

2 that has minimal norm (to be shown)

ä In the full-rank overdetermined case, the normal equations yield
x = (ATA)−1AT︸ ︷︷ ︸

A†

b
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Least-squares problem via the SVD

Pb: min ‖b−Ax‖2 in general case. Consider SVD of A:

A =
(
U1 U2

) (Σ1 0
0 0

)(
V T

1

V T
2

)
=

r∑
i=1

σiviu
T
i

Then left multiply by UT to get

‖Ax− b‖2
2 =

∥∥∥∥(Σ1 0
0 0

)(
y1

y2

)
−
(
UT

1

UT
2

)
b

∥∥∥∥2

2

with

(
y1

y2

)
=

(
V T

1

V T
2

)
x

-1 What are all least-squares solutions to the system? Among
these which one has minimum norm?
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Answer: From above, must have y1 = Σ−1
1 UT

1 b and y2 =
anything (free).

ä Recall that x = V y and write

x = [V1, V2]

(
y1

y2

)
= V1y1 + V2y2

= V1Σ
−1
1 UT

1 b+ V2y2

= A†b+ V2y2

ä Note: A†b ∈ Ran(AT) and V2y2 ∈ Null(A).

ä Therefore: least-squares solutions are of the form A†b + w
where w ∈ Null(A).

ä Smallest norm when y2 = 0.
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ä Minimum norm solution to minx ‖Ax− b‖2
2 satisfies Σ1y1 =

UT
1 b, y2 = 0. It is:

xLS = V1Σ
−1
1 UT

1 b = A†b

-2 If A ∈ Rm×n what are the dimensions of A†?, A†A?,
AA†?

-3 Show that A†A is an orthogonal projector. What are its range
and null-space?

-4 Same questions for AA†.
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Moore-Penrose Inverse

The pseudo-inverse of A is given by

A† = V

(
Σ−1

1 0
0 0

)
UT =

r∑
i=1

viu
T
i

σi

Moore-Penrose conditions:

The pseudo inverse of a matrix is uniquely determined by these four
conditions:

(1) AXA = A (2) XAX = X
(3) (AX)H = AX (4) (XA)H = XA

ä In the full-rank overdetermined case, A† = (ATA)−1AT
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Least-squares problems and the SVD

ä The SVD can give much information on solutions of overdeter-
mined and underdetermined linear systems.

Let A be an m × n matrix and A = UΣV T its SVD with
r = rank(A), V = [v1, . . . , vn] U = [u1, . . . , um]. Then

xLS =

r∑
i=1

uTi b

σi
vi

minimizes ‖b − Ax‖2 and has the smallest 2-norm among all
possible minimizers. In addition,

ρLS ≡ ‖b−AxLS‖2 = ‖z‖2 with z = [ur+1, . . . , um]Tb
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Least-squares problems and pseudo-inverses

ä A restatement of the first part of the previous result:

Consider the general linear least-squares problem

min
x ∈ S

‖x‖2, S = {x ∈ Rn | ‖b−Ax‖2 min}.

This problem always has a unique solution given by

x = A†b
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-5 Consider the matrix: A =

(
1 0 2 0
0 0 −2 1

)

• Compute the thin SVD of A

• Find the matrix B of rank 1 which is the closest to the above
matrix in the 2-norm sense.

• What is the pseudo-inverse of A?

• What is the pseudo-inverse of B?

• Find the vector x of smallest norm which minimizes ‖b−Ax‖2

with b = (1, 1)T

• Find the vector x of smallest norm which minimizes ‖b−Bx‖2

with b = (1, 1)T
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Ill-conditioned systems and the SVD

ä Let A be m×m and A = UΣV T its SVD

ä Solution of Ax = b is x = A−1b =
∑m

i=1
uTi b

σi
vi

ä When A is very ill-conditioned, it has many small singular values.
The division by these small σi’s will amplify any noise in the data. If
b̃ = b+ ε then

A−1b̃ =

m∑
i=1

uTi b

σi
vi +

m∑
i=1

uTi ε

σi
vi︸ ︷︷ ︸

Error

ä Result: solution could be completely meaningless.
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Remedy: SVD regularization

Truncate the SVD by only keeping the σ′is that are ≥ τ , where
τ is a threshold
ä Gives the Truncated SVD solution (TSVD solution:)

xTSV D =
∑
σi≥τ

uTi b

σi
vi

ä Many applications [e.g., Image and signal processing,..]
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Numerical rank and the SVD

ä Assuming the original matrixA is exactly of rank k the computed
SVD of A will be the SVD of a nearby matrix A+ E – Can show:
|σ̂i − σi| ≤ α σ1u

ä Result: zero singular values will yield small computed singular
values and r larger sing. values.

ä Reverse problem: numerical rank – The ε-rank of A :

rε = min{rank(B) : B ∈ Rm×n, ‖A−B‖2 ≤ ε},

-6 Show that rε equals the number sing. values that are >ε

-7 Show: rε equals the number of columns of A that are linearly
independent for any perturbation of A with norm ≤ ε.

ä Practical problem : How to set ε?
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Pseudo inverses of full-rank matrices

Case 1: m > n Then A† = (ATA)−1AT

ä Thin SVD is A = U1Σ1V
T

1 and V1,Σ1 are n× n. Then:

(ATA)−1AT = (V1Σ
2
1V

T
1 )−1V1Σ1U

T
1

= V1Σ
−2
1 V T

1 V1Σ1U
T
1

= V1Σ
−1
1 UT

1

= A†

Example: Pseudo-inverse of


0 1
1 2
2 −1
0 1

 is?
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Case 2: m < n Then A† = AT(AAT)−1

ä Thin SVD is A = U1Σ1V
T

1 . Now U1,Σ1 are m×m and:

AT(AAT)−1 = V1Σ1U
T
1 [U1Σ

2
1U

T
1 ]−1

= V1Σ1U
T
1 U1Σ

−2
1 UT

1

= V1Σ1Σ
−2
1 UT

1

= V1Σ
−1
1 UT

1

= A†

Example: Pseudo-inverse of

(
0 1 2 0
1 2 −1 1

)
is?

ä Mnemonic: The pseudo inverse of A is AT completed by the
inverse of the smaller of (ATA)−1 or (AAT)−1 where it fits (i.e.,
left or right)
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