The QR algorithm

»  The most common method for solving small (dense) eigenvalue
problems. The basic algorithm:

QR without shifts

1. Until Convergence Do:

2. Compute the QR factorization A = QR
3. Set A := RQ

4. EndDo

»  “Until Convergence” means “Until A becomes close enough to
an upper triangular matrix”

» Note: Apew = RQ = QH(QR)Q = QP AQ
» A, ew Unitarily similar to A — Spectrum does not change
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» Convergence analysis complicated — but insight: we are implicitly
doing a QR factorization of Ak

QR-Factorize: Multiply backward:

Step 1 Ao = QoRy A1 = RoQo
Step 2 A =QR Ay = RQy
Step 3: A2 = Q2R2 A3 = R2Q2 Then:
[QuQ1Q:][R:R1Ry] = QoQ1A2R1 Ry
= Qo(QlRl)(QlRl)Ro

= QoArds Ry, A1 = RoQo —
= — A3
= (QoRo) (QoRs), (QuRo) = A

A A A
> [QoQ:1Q2][R2R;Ry] == QR factorization of A3

» This helps analyze the algorithm (details skipped)
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»  Above basic algorithm is never used as is in practice. Two
variations:

(1) Use shift of origin and

(2) Start by transforming A into an Hessenberg matrix
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Practical QR algorithms: Shifts of origin

Observation: (from theory): Last row converges fastest. Convergence

is dictated by |)|\)"1|1|

| »  We will now consider only the real symmetric case.|

» Eigenvalues are real.
» A% remains symmetric throughout process.

» As k goes to infinity the last column and row (except a(®))
converge to zero quickly.,,

(k) i
» and a,) converges to lowest eigenvalue.
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a a a a a
» ldea: Apply QR algorithm to A®) — puT with p = agjz. Note:

eigenvalues of A®) — T are shifted by , and eigenvectors are the
same.
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QR with shifts

1. Until row a;,, 1 < ¢ < n converges to zero DO:
2. Obtain next shift (e.g. p = ann)

3. A—pl =QR

5. Set A := RQ + uI

6. EndDo

»  Convergence (of last row) is cubic at the limit! [for symmetric
case]
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»  Result of algorithm:

AR —

0 0 0 0 0\,
» Next step: deflate, i.e., apply above algorithm to (n — 1) X
(n — 1) upper block.
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Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

aij:0forj<z'—1

Observation: The QR algorithm preserves Hessenberg form (tridi-
agonal form in symmetric case). Results in substantial savings.

Transformation to Hessenberg form

»  Want 1%[114_[{’111 = HlAH1 to
have the form shown on the right

»  Consider the first step only on a
6 X 6 matrix

S O O O x
L D S s
b D S
* % X% % %
* % % % %
* % % % %
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» Choose a w in H; = I — 2wwT to make the first column
have zeros from position 3 to n. So w; = 0.

» Apply to left: B = H1 A

»  Apply to right: Ay = BH;.

Main observation: the Householder matrix H; which transforms
the column A(2 : n, 1) into e; works only on rows 2 to . When
applying the transpose H7 to the right of B = H{ A, we observe

that only columns 2 to m will be altered. So the first column will
retain the desired pattern (zeros below row 2).

»  Algorithm continues the same way for columns 2, ... n — 2.

QR for Hessenberg matrices

» Need the “Implicit Q theorem”

Suppose that QT AQ is an unreduced upper Hessenberg matrix.
Then columns 2 to n of Q are determined uniquely (up to signs)
by the first column of Q.

» In other words if VITAV = G and QTAQ = H are both
Hessenberg and V' (:, 1) = Q(:, 1) then V (:,2) = £Q(:,12) for
t=2:n.

Implication: | To compute A;11 = Q?AQi we can:

»  Compute 1st column of Q; [== scalar X A(:,1)]

» Choose other columns so Q; = unitary, and A;; = Hessenberg.
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. % x w x 2. Choose Gy = G(2, 3, 05) so that (G A1)31 =0
» W'l do this with Givens rotations: « % ok % %

A=10 % % % x % k% ok k%
Bampie: Wik n =5 R
0 0 0 =* = » A, = GgAng =0 % % x x
0 + % *x =
1. Choose G1 = G(1,2,6,) so that (GT Ag)21 = 0 0 0 0 =% =

> A =GlAG, =

© O+ ¥ %
O O % ¥ ¥
O % % ¥ ¥
* ¥ ¥ % *
* ¥ ¥ % *
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3. Choose G5 = G(3,4,03) so that (G} As)s2 =

=

) o A3 == G§A2G3 —

© OO % ¥
OO % ¥ %
+ % ¥ % %
* % ¥ % ¥
¥ % % % %
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4. Choose G4 = G(4,5,0,) so that (GZA3)53 =0

> Ay =Gl A;Gy =

O O O ¥ ¥
S O % ¥ ¥
S ¥ ¥ ¥ ¥
* ¥ ¥ ¥ ¥
* ¥ ¥ ¥ ¥

»  Process known as “Bulge chasing”

» Similar idea for the symmetric (tridiagonal) case
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The symmetric eigenvalue problem: Basic facts

»  Consider the Schur form of a real symmetric matrix A:
A = QRQ"
Since AH = A then R = RH »

Eigenvalues of A are real

and

There is an orthonormal basis of eigenvectors of A

In addition, @ can be taken to be real when A is real.
(A=A (u+itv) =0 > (A—Au=0& (A—Al)v =0
»  Can select eigenvector to be either u or v
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The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly:

A1 A2 2 2 A

The eigenvalues of a Hermitian matrix A are characterized by the
relation

. (Az,x)
A = max min ———
S, dim(S)=k x€Sa#0 (x,x)

Proof:  Preparation: Since A is symmetric real (or Hermitian complex) there is

an orthonormal basis of eigenvectors wy, 2, + - - , u,. Express any vector x in this

basis as x = Y i | au;. Then: (Az,z)/(x,x) = [ Ni|aul?]/ [ il

(a) Let S be any subspace of dimension k and let W = span{ug, ©g41,°** ,Upn}.

A dimension argument (used before) shows that S N W # {0}. So there is a
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non-zero &, in S M W. Express this x,, in the eigenbasis as x,, = Z;’:k ou;.
Then since A\; < Ag for ¢ > k we have:
(Amun mw) Z?:k >‘i|ai|2
= == <
(Tws Tw) Zi:k | vl

So for any subspace S of dim. k we have mingegz+0(Ax, ) /(z,x) < Ag.

(b) We now take S, = span{uy, wa, - ,ug}. Since \; > Ag for ¢ < k, for
this particular subspace we have:

(A:B,:l?) _ . Z?=1 )\i|ai|2 _

= =
@ € Su a0 (T, @) @€ S a0 S |oyf? *

(c) The results of (a) and (b) imply that the max over all subspaces S of dim. k
of mingecg z20(Ax, x)/(x,x) is equal to A L]
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»  Consequences:

(Az, ) . (Az, )
Al = max-—— = n = min ———=
z#0  (x,x) z#£0 (x,x)

»  Actually 4 versions of the same theorem. 2nd version:

. (Azx, x)
A = min max ———
S, dim(S)=n—k+1 z€Sa£0 (x,x)

»  Other 2 versions come from ordering eigenvalues increasingly
instead of decreasingly.

Write down all 4 versions of the theorem
Use the min-max theorem to show that || A||2 = o1(A) - the

largest singular value of A.
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» Interlacing Theorem: Denote the k X k principal submatrix of
A as Ay, with eigenvalues {)\Ek] ?:1- Then

AM > B > B > a1 LB S 5

A;'s = eigenvalues of A, p;'s = eigenvalues of A,,_1:

An )\n—l Ag }\2 A1
@k 0 &%k 0 Kk 0 Kk 0 k% 0 Kk O Kk 0
HEn—1 Hn—2 M2 241
»  Many uses.

»  For example: interlacing theorem for roots of orthogonal polyno-
mials
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The Law of inertia (real symmetric matrices)

» Inertia of a matrix = [m, z, p|] with m = number of < 0
eigenvalues, z = number of zero eigenvalues, and p = number of
> 0 eigenvalues.

Sylvester’s Law If X € R™ ™ js nonsingular, then A
of inertia: and XT AX have the same inertia.

Suppose that A = LDLT where L is unit lower triangular,
and D diagonal. How many negative eigenvalues does A have?

Assume that A is tridiagonal. How many operations are re-
quired to determine the number of negative eigenvalues of A7
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Devise an algorithm based on the inertia theorem to compute
the 2-th eigenvalue of a tridiagonal matrix.

Let ¥ € R™*"™ with n < m, and F of rank n.
What is the inertia of the matrix on the right: I F
[Hint: use a block LU factorization] FT 0

» Note 1: Converse result also true: If A and B have same inertia
they are congruent. [This part is easy to show]

» Note 2: result also true for Hermitian matrices (X2 AX has
same inertia as A).
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Bisection algorithm for tridiagonal matrices:

»  Goal: to compute i-th eigenvalue of A (tridiagonal)

»  Get interval [a, b] containing @< A << A <b
spectrum [Gershgorin]: = n = S AL S

» Let o0 = (a + b)/2 = middle of interval
» Calculate p = number of positive eigenvalues of A — oI

e lfp>ithen\; € (o, b] &> set a:=0

a Ay Apd Y A, b

—’—0—0—0—'—0—0—0—'1—'—

e Else then \; € [a, 0] &> set b:=0o

»  Repeat until b — a is small enough.
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The QR algorithm for symmetric matrices

»  Most important method used : reduce to tridiagonal form and
apply the QR algorithm with shifts.

»  Householder transformation to Hessenberg form yields a tridiag-
onal matrix because

HAHT = A,

is symmetric and also of Hessenberg form » it is tridiagonal sym-
metric.

Tridiagonal form preserved by QR similarity transformation
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Practical method

»  How to implement the QR algorithm with shifts?

» |t is best to use Givens rotations — can do a shifted QR step
without explicitly shifting the matrix..

»  Two most popular shifts:

S = Qpp and s = smallest ev. of A(n —1:n,n —1:n)
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Jacobi iteration - Symmetric matrices

»  Main idea: Rotation matrices of the form

1 ... 0 ce 0O O
0 e C e S cee 0 P
J(p? q, 0) — i H T H : ;
0 s —S8 oo C [ 0 q

0o ... 0 . 1
c = cos @ and s = sin @ are so that J(p,q,0)TAJ(p,q,0)
has a zero in position (p, q) (and also (g, p))

»  Frobenius norm of matrix is preserved — but diagonal elements
become larger » convergence to a diagonal.
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» Let B=JTAJ (where J = J, 40).
» Look at 2 X 2 matrix B([p, q], [p, q]) (matlab notation)

»  Keep in mind that a,q = agp and byq = by

bpp bpg _ (Cc —s App Apq c s
bgp bgg) \s c Qgp Qqq —sc
(C —s) [capp — sapq\sapp + capql

s ¢ CQgp — SQAgq ‘ SQpq + Cagq

Czapp + 32aqq — 2sc apq‘ (c® — 32)“10(1 — sc(agq — app)
* | CPagq + sPap, + 2sc ayg

¢ — s Qqq — Qpp _
= =T
2sc 2a,,

» Lettingt = s/c (=tanf) — quad. equation
t?+ 27t —1=0

\/

— / _ 1

T2

\/

Select sign to get a smaller t so 8 < 7 /4.

1
Viter

»  Implemented in matlab script jacrot(A,p,q) -

» Then : c =

s=cxt

2 2 —
» Want: (c® — s%)apg — sc(agq — app) =0
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. P ———— = A ‘with its diagonal » || Ao||F will decrease from one step to the next.
» Define: o = A — Diag(A)

entries replaced by zeros'

»  Observations: (1) Unitary transformations preserve ||.||r. (2)
Only changes are in rows and columns p and q.

» Let B = JTAJ (where J = J,40). Then,

2 2 2 __ 72 2 2 __ 72 2
app+aqq+2apq — bpp+bqq+2bpq — bpp+bqq

because b,; = 0. Then, a little calculation leads to:
IBollz = 1Bl — > _b% = Allz — ) b,
= [|All% — Za?i + Z aj; — Z by,
= ”AOHE’ + (azzp + azq - b12)p - btzzq)
= ||AO||F - 2apq
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Let ||A0||I = IMaX;+; |aij|. Show that
[Aollr < vn(n —1)[| Aol

Use this to show convergence in the case when largest entry is
zeroed at each step.
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