LARGE SPARSE EIGENVALUE PROBLEMS

General Tools for Solving Large Eigen-Problems

- Projection methods
- The subspace iteration
- Krylov subspace methods: Arnoldi and Lanczos
- Golub-Kahan-Lanczos bidiagonalization

$$
14-2
$$

Projection techniques - Arnoldi, Lanczos, Subspace Iteration;
> Preconditioninings: shift-and-invert, Polynomials, ...
$>$ Deflation and restarting techniques
> Computational codes often combine these three ingredients

Projection Methods for Eigenvalue Problems

Projection method onto K orthogonal to L

> Given: Two subspaces \boldsymbol{K} and \boldsymbol{L} of same dimension.
> Approximate eigenpairs $\tilde{\lambda}, \tilde{u}$, obtained by solving:

$$
\text { Find: } \tilde{\lambda} \in \mathbb{C}, \tilde{u} \in \boldsymbol{K} \text { such that }(\tilde{\lambda} I-A) \tilde{u} \perp L
$$

> Two types of methods:
Orthogonal projection methods: Situation when $\boldsymbol{L}=\boldsymbol{K}$.
Oblique projection methods: When $\boldsymbol{L} \neq \boldsymbol{K}$.
> First situation leads to Rayleigh-Ritz procedure

Rayleigh-Ritz projection

Given: a subspace \boldsymbol{X} known to contain good approximations to eigenvectors of \boldsymbol{A}.
Question: How to extract 'best' approximations to eigenvalues/ eigenvectors from this subspace?

Answer:

Orthogonal projection method
Let $Q=\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{\boldsymbol{m}}\right]=$ orthonormal basis of \boldsymbol{X}
$>$ Orthogonal projection method onto \boldsymbol{X} yields:

$$
Q^{H}(A-\tilde{\lambda} I) \tilde{u}=0 \rightarrow
$$

$>Q^{H} A Q y=\tilde{\lambda} y$ where $\tilde{u}=\boldsymbol{Q} \boldsymbol{y}$
> Known as Rayleigh Ritz process
\qquad $\longrightarrow{ }_{14-5}$ Gv14 10.1,10.5.1 - Eigen3
${ }^{14-5}$

Subspace Iteration

Original idea: projection technique onto a subspace of the form

 $Y=A^{k} X$Practically: \boldsymbol{A}^{k} replaced by suitable polynomial
Advantages: • Easy to implement (in symmetric case);

- Easy to analyze;

Disadvantage: Slow.
$>$ Often used with polynomial acceleration: $\boldsymbol{A}^{k} \boldsymbol{X}$ replaced by $C_{k}(A) X$. Typically $C_{k}=$ Chebyshev polynomial

Procedure:

1. Obtain an orthonormal basis of \boldsymbol{X}
2. Compute $C=Q^{H} A Q$ (an $m \times m$ matrix)
3. Obtain Schur factorization of $C, C=Y R Y^{H}$
4. Compute $\tilde{U}=Q \boldsymbol{Y}$

Property: if \boldsymbol{X} is (exactly) invariant, then procedure will yield exact eigenvalues and eigenvectors.

Proof: Since \boldsymbol{X} is invariant, $(\boldsymbol{A}-\tilde{\lambda} \boldsymbol{I}) \boldsymbol{u}=\boldsymbol{Q} \boldsymbol{z}$ for a certain \boldsymbol{z}. $\overline{Q^{H} Q} z=0$ implies $z=0$ and therefore $(A-\tilde{\lambda} I) u=0$.
$>$ Can use this procedure in conjunction with the subspace obtained from subspace iteration algorithm
\qquad
${ }^{14-6}$

Algorithm: Subspace Iteration with Projection

1. Start: Choose an initial system of vectors $\boldsymbol{X}=\left[x_{0}, \ldots, x_{m}\right]$ and an initial polynomial C_{k}.
2. Iterate: Until convergence do:
(a) Compute $\hat{\boldsymbol{Z}}=C_{k}(\boldsymbol{A}) \boldsymbol{X}$. [Simplest case: $\hat{\boldsymbol{Z}}=\boldsymbol{A X}$.]
(b) Orthonormalize $\hat{Z}: \quad\left[Z, R_{Z}\right]=\operatorname{qr}(\hat{Z}, 0)$
(c) Compute $\boldsymbol{B}=\boldsymbol{Z}^{H} \boldsymbol{A} \boldsymbol{Z}$
(d) Compute the Schur factorization $\boldsymbol{B}=\boldsymbol{Y} \boldsymbol{R}_{B} \boldsymbol{Y}^{\boldsymbol{H}}$ of \boldsymbol{B}
(e) Compute $\boldsymbol{X}:=\boldsymbol{Z} \boldsymbol{Y}$.
(f) Test for convergence. If satisfied stop. Else select a new polynomial $C_{k^{\prime}}^{\prime}$ and continue.

THEOREM: Let $S_{0}=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and assume that S_{0} is such that the vectors $\left\{P x_{i}\right\}_{i=1, \ldots, m}$ are linearly independent where \boldsymbol{P} is the spectral projector associated with $\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}$. Let \mathcal{P}_{k} the orthogonal projector onto the subspace $S_{k}=\operatorname{span}\left\{\boldsymbol{X}_{k}\right\}$. Then for each eigenvector u_{i} of $\boldsymbol{A}, \boldsymbol{i}=1, \ldots, m$, there exists a unique vector s_{i} in the subspace S_{0} such that $P s_{i}=u_{i}$. Moreover, the following inequality is satisfied

$$
\begin{equation*}
\left\|\left(I-\mathcal{P}_{k}\right) u_{i}\right\|_{2} \leq\left\|u_{i}-s_{i}\right\|_{2}\left(\left|\frac{\lambda_{m+1}}{\lambda_{i}}\right|+\epsilon_{k}\right)^{k} \tag{1}
\end{equation*}
$$

where $\boldsymbol{\epsilon}_{\boldsymbol{k}}$ tends to zero as \boldsymbol{k} tends to infinity.

Krylov subspace methods
Principle: Projection methods on Krylov subspaces:

$$
\boldsymbol{K}_{m}\left(\boldsymbol{A}, \boldsymbol{v}_{1}\right)=\operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{A} \boldsymbol{v}_{1}, \cdots, \boldsymbol{A}^{m-1} \boldsymbol{v}_{1}\right\}
$$

- The most important class of projection methods [for linear systems and for eigenvalue problems]
- Variants depend on the subspace \boldsymbol{L}
$>$ Let $\mu=$ deg. of minimal polynom. of \boldsymbol{v}_{1}. Then:
- $\boldsymbol{K}_{m}=\left\{p(A) \boldsymbol{v}_{1} \mid \boldsymbol{p}=\right.$ polynomial of degree $\left.\leq m-1\right\}$
- $\boldsymbol{K}_{m}=\boldsymbol{K}_{\mu}$ for all $\boldsymbol{m} \geq \boldsymbol{\mu}$. Moreover, \boldsymbol{K}_{μ} is invariant under \boldsymbol{A}.
- $\operatorname{dim}\left(K_{m}\right)=m$ iff $\mu \geq m$.

Let: $\overline{\boldsymbol{H}}_{m}=\left(\begin{array}{lllll}\boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} \\ \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} \\ & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} \\ & & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} \\ & & & \boldsymbol{x} & \boldsymbol{x} \\ & & & & \boldsymbol{x}\end{array}\right), \boldsymbol{H}_{\boldsymbol{m}}=\left(\begin{array}{cllll}\boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} \\ \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} \\ & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} \\ & & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} \\ & & & \boldsymbol{x} & \boldsymbol{x}\end{array}\right)$

Results:

1. $\boldsymbol{V}_{m}=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$ orthonormal basis of \boldsymbol{K}_{m}.
2. $\boldsymbol{A} \boldsymbol{V}_{m}=\boldsymbol{V}_{m+1} \overline{\boldsymbol{H}}_{m}=\boldsymbol{V}_{m} \boldsymbol{H}_{m}+h_{m+1, m} \boldsymbol{v}_{m+1} \boldsymbol{e}_{m}^{T}$
3. $\boldsymbol{V}_{m}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{V}_{m}=\boldsymbol{H}_{m} \equiv \overline{\boldsymbol{H}}_{m}$ - last row.
$14-13 \longrightarrow$ Gvl4 10.1,10.5.1 - Eigen3

Application to eigenvalue problems

> Write approximate eigenvector as $\tilde{\boldsymbol{u}}=\boldsymbol{V}_{\boldsymbol{m}} \boldsymbol{y}$
> Galerkin condition:

$$
(A-\tilde{\lambda} I) V_{m} y \perp \mathcal{K}_{m} \quad \rightarrow \quad V_{m}^{H}(A-\tilde{\lambda} I) V_{m} y=0
$$

$>$ Approximate eigenvalues are eigenvalues of $\boldsymbol{H}_{\boldsymbol{m}}$

$$
\boldsymbol{H}_{m} \boldsymbol{y}_{j}=\tilde{\lambda}_{j} \boldsymbol{y}_{j}
$$

Associated approximate eigenvectors are

$$
\tilde{\boldsymbol{u}}_{j}=\boldsymbol{V}_{m} \boldsymbol{y}_{j}
$$

> Typically a few of the outermost eigenvalues will converge first.
$\xrightarrow{14-14}$
Gvl4 10.1,10.5.1 - Eigen3
14-14

Consequence: three term recurrence

$$
\boldsymbol{\beta}_{j+1} \boldsymbol{v}_{j+1}=\boldsymbol{A} \boldsymbol{v}_{j}-\boldsymbol{\alpha}_{j} \boldsymbol{v}_{j}-\boldsymbol{\beta}_{j} \boldsymbol{v}_{j-1}
$$

ALGORITHM: 2. Lanczos

1. Choose an initial \boldsymbol{v}_{1} with $\left\|v_{-1}\right\|_{2}=1$;

$$
\text { Set } \beta_{1} \equiv 0, v_{0} \equiv 0
$$

. For $j=1,2, \ldots, m$ Do:
3. $\quad w_{j}:=A v_{j}-\beta_{j} v_{j-1}$
4. $\alpha_{j}:=\left(w_{j}, v_{j}\right)$
5. $\quad w_{j}:=w_{j}-\alpha_{j} v_{j}$
6. $\boldsymbol{\beta}_{j+1}:=\left\|w_{j}\right\|_{2}$. If $\beta_{j+1}=\mathbf{0}$ then Stop
$\boldsymbol{v}_{j+1}:=w_{j} / \boldsymbol{\beta}_{j+1}$
EndDo
Hermitian matrix + Arnoldi \rightarrow Hermitian Lanczos
$>$ In theory $v_{i}{ }^{\prime}$'s defined by 3-term recurrence are orthogonal.

Reorthogonalization

However: in practice severe loss of orthogonality

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the first eigenpair has converged. It is a sign of loss of linear independence of the computed eigenvectors. When orthogonality is lost, then several the copies of the same eigenvalue start appearing

Lanczos Bidiagonalization

$>$ We now deal with rectangular matrices. Let $A \in \mathbb{R}^{m \times n}$.
ALGORITHM: 3. Golub-Kahan-Lanczos

1. Choose an initial v_{1} with $\left\|v_{1}\right\|_{2}=1$;

$$
\text { Set } \beta_{0} \equiv 0, u_{0} \equiv 0
$$

2. For $k=1, \ldots, p$ Do:
3. $\hat{u}:=\boldsymbol{A} \boldsymbol{v}_{k}-\boldsymbol{\beta}_{k-1} \boldsymbol{u}_{k-1}$
4. $\alpha_{k}=\|\hat{u}\|_{2} ; \quad u_{k}=\hat{u} / \alpha_{k}$
5. $\hat{\boldsymbol{v}}=\boldsymbol{A}^{T} u_{k}-\boldsymbol{\alpha}_{k} \boldsymbol{v}_{k}$
6. $\quad \boldsymbol{\beta}_{k}=\|\hat{\boldsymbol{v}}\|_{2} ; \quad \boldsymbol{v}_{k+1}:=\hat{\boldsymbol{v}} / \boldsymbol{\beta}_{k}$
7. EndDo

Let:

$14-19$

$$
\begin{gathered}
\boldsymbol{B}_{p}=\left[\begin{array}{cccccc}
\boldsymbol{\alpha}_{1} & \boldsymbol{\beta}_{1} & & & \\
& \boldsymbol{\alpha}_{2} & \boldsymbol{\beta}_{2} & & \\
& & \ddots & \cdots & \\
& & & \ddots & \cdots & \\
& & & & \boldsymbol{\alpha}_{p} & \boldsymbol{\beta}_{p}
\end{array}\right] ; \\
>\hat{B}_{p}=\boldsymbol{B}_{p}(:, 1: p) \\
>V_{p}=\left[v_{1}, v_{2}, \cdots, v_{p}\right] \in \mathbb{R}^{n \times p}
\end{gathered}
$$

$$
\begin{array}{|l}
\hline>V_{p+1}^{T} V_{p+1}=I \\
>U_{p}^{T} U_{p}=I \\
> \\
>\boldsymbol{A V}_{p}=U_{p} \hat{B}_{p} \\
>\boldsymbol{A}^{T} \boldsymbol{U}_{p}=V_{p+1} B_{p}^{T} \\
\hline
\end{array}
$$

$>$ Observe that: $\quad \boldsymbol{A}^{T}\left(\boldsymbol{A} \boldsymbol{V}_{p}\right)=\boldsymbol{A}^{T}\left(\boldsymbol{U}_{p} \hat{\boldsymbol{B}}_{p}\right)$

$$
=V_{p+1} B_{p}^{T} \hat{B}_{p}
$$

$>B_{p}^{T} \hat{B}_{p}$ is a (symmetric) tridiagonal matrix of size $(p+1) \times p$
$>$ Call this matrix $\overline{T_{k}}$. Then: $\quad\left(A^{T} A\right) V_{p}=V_{p+1} \overline{T_{p}}$
$>$ Standard Lanczos relation!
$>$ Algorithm is equivalent to standard Lanczos applied to $\boldsymbol{A}^{T} \boldsymbol{A}$.
$>$ Similar result for the \boldsymbol{u}_{i} 's [involves $\boldsymbol{A} \boldsymbol{A}^{T}$]
W1 Work out the details: What are the entries of $\overline{\boldsymbol{T}}_{p}$ relative to those of \boldsymbol{B}_{p} ?

