SOLVING LINEAR SYSTEMS OF EQUATIONS

- Background on linear systems
- Gaussian elimination and the Gauss-Jordan algorithms
- The LU factorization
- Gaussian Elimination with pivoting permutation matrices.
- Case of banded systems

Background: Linear systems

The Problem: A is an $n \times n$ matrix, and b a vector of \mathbb{R}^n . Find x such that:

Ax = b

 $\succ x$ is the unknown vector, b the right-hand side, and A is the coefficient matrix

Example:

	$\int 2x_1 + 4x_2 + 4x_3 = 6$	(2 4 4)	$\langle x_1 \rangle$	/6	3
3	$x_1 + 5 x_2 + 6 x_3 = 4$ or	1 5 6	$ x_2 $ =	= 4	1
	$egin{pmatrix} 2x_1+4x_2+4x_3&=6\ x_1+5x_2+6x_3&=4\ x_1+3x_2+x_3&=8 \end{cases}$ or	$\begin{pmatrix} 1 & 3 & 1 \end{pmatrix}$	$\langle x_3 \rangle$	8/	3/

Solution of above system ?

GvL 3.{1,3,5} – Systems

> Standard mathematical solution by Cramer's rule:

 $x_i = \det(A_i)/\det(A)$

3-1

 $A_i =$ matrix obtained by replacing *i*-th column by *b*.

> Note: This formula is useless in practice beyond n = 3 or n = 4.

Three situations:

- 1. The matrix A is nonsingular. There is a unique solution given by $x = A^{-1}b$.
- 2. The matrix A is singular and $b \in \operatorname{Ran}(A)$. There are infinitely many solutions.
- 3. The matrix A is singular and $b \notin \operatorname{Ran}(A)$. There are no solutions.

3-3

Example: (1) Let $A = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$ $b = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$. A is nonsingular > a unique solution $x = \begin{pmatrix} 0.5 \\ 2 \end{pmatrix}$.

3-2

Example: (2) Case where A is singular $\& b \in \operatorname{Ran}(A)$:

$$A=egin{pmatrix} 2&0\0&0\end{pmatrix},\quad b=egin{pmatrix} 1\0\end{pmatrix}.$$

3-4

▶ infinitely many solutions: $x(\alpha) = \begin{pmatrix} 0.5 \\ \alpha \end{pmatrix} \quad \forall \ \alpha.$

Example: (3) Let A same as above, but $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

No solutions since 2nd equation cannot be satisfied

GvL 3.{1,3,5} – Systems

Triangular linear systems

Example:

$$egin{pmatrix} 2 & 4 & 4 \ 0 & 5 & -2 \ 0 & 0 & 2 \end{pmatrix} egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} = egin{pmatrix} 2 \ 1 \ 4 \end{pmatrix}$$

> One equation can be trivially solved: the last one. $x_3 = 2$

> x_3 is known we can now solve the 2nd equation:

 $5x_2 - 2x_3 = 1 \rightarrow 5x_2 - 2 \times 2 = 1 \rightarrow x_2 = 1$

> Finally x_1 can be determined similarly:

 $2x_1 + 4x_2 + 4x_3 = 2 \rightarrow \dots \rightarrow x_1 = -5$

3-5

GvL 3.{1,3,5} – Systems

Column version of back-substitution

Back-Substitution algorithm. Column version

For
$$j = n: -1: 1$$
 do:
 $x_j = b_j/a_{jj}$
For $i = 1: j - 1$ do
 $b_i := b_i - x_j * a_{ij}$
End
End

Justify the above algorithm [Show that it does indeed compute the solution]

3-7

> Analogous algorithms for *lower* triangular systems.

ALGORITHM : 1 Back-Substitution algorithm

For
$$i = n : -1 : 1$$
 do:
 $t := b_i$
For $j = i + 1 : n$ do
 $t := t - a_{ij}x_j$
End
 $x_i = t/a_{ii}$
End
 $t := t - a_{ij}x_j$
 $t := b_i - (a_{i,i+1:n}, x_{i+1:n})$
 $= b_i - an inner product$
 $x_i = t/a_{ii}$

- \blacktriangleright We must require that each $a_{ii}
 eq 0$
- Operation count?

GvL 3.{1,3,5} - Systems

Linear Systems of Equations: Gaussian Elimination

3-6

> Back to arbitrary linear systems.

Principle of the method: Since triangular systems are easy to solve, we will transform a linear system into one that is triangular. Main operation: combine rows so that zeros appear in the required locations to make the system triangular.

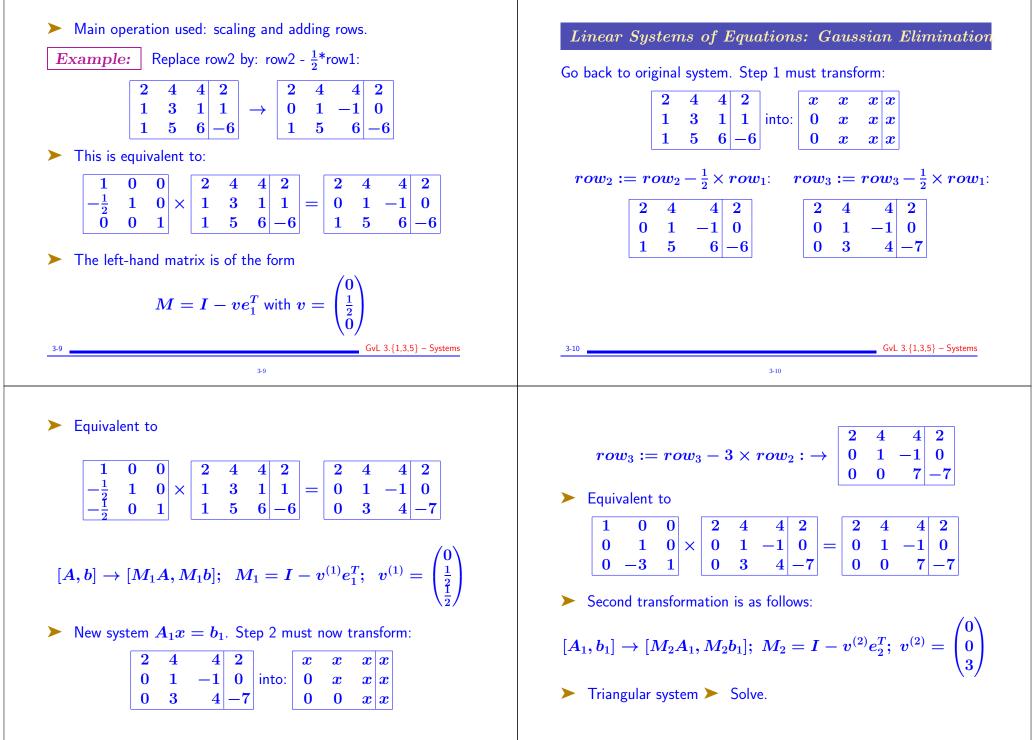
Notation: use a Tableau:

	$2x_1 + 4x_2 + 4x_3 = 0$	2		2	4	4	2
{	$egin{array}{rcl} 2x_1+4x_2+4x_3=\ x_1+3x_2+1x_3=\ \end{array}$	1	tableau:	1	3	1	1
	$x_1 + 5x_2 + 6x_3 = -$						-6

3-8

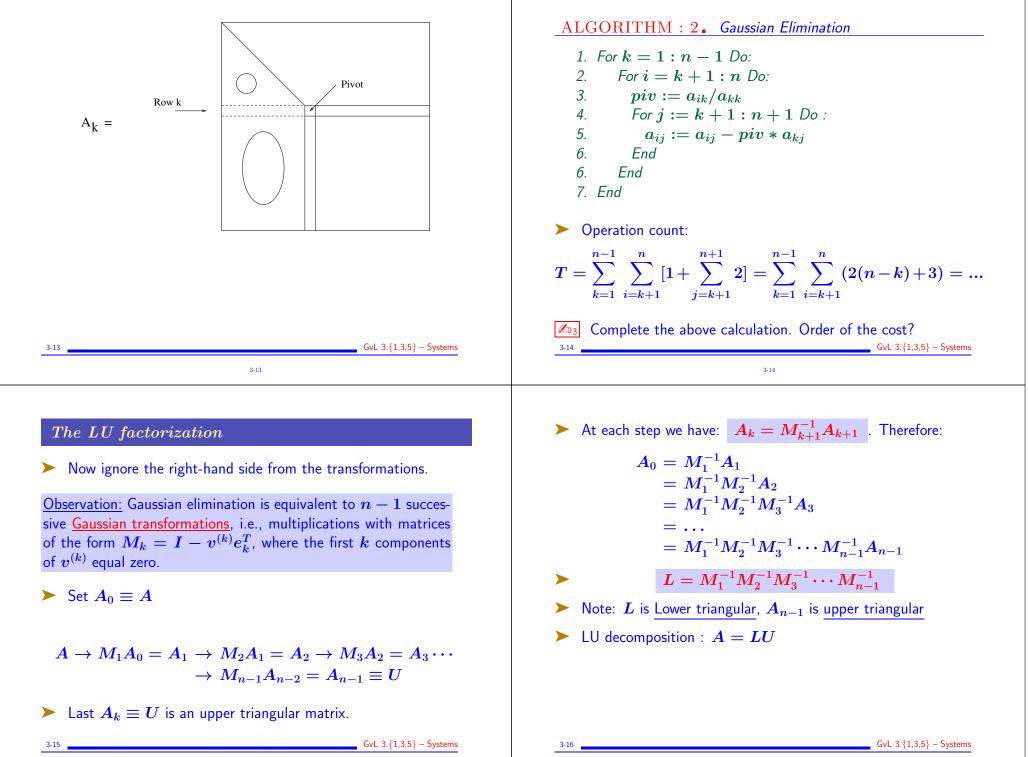
GvL 3.{1,3,5} – Systems

GvL 3.{1,3,5} - Systems



3-12

GvL 3.{1,3,5} – Systems



3-16

How to get L?

$L = M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1}$

Consider only the first 2 matrices in this product.

Note $M_k^{-1} = (I - v^{(k)}e_k^T)^{-1} = (I + v^{(k)}e_k^T)$. So: $M_1^{-1}M_2^{-1} = (I + v^{(1)}e_1^T)(I + v^{(2)}e_2^T) = I + v^{(1)}e_1^T + v^{(2)}e_2^T$.

► Generally,

 $M_1^{-1}M_2^{-1}\cdots M_k^{-1} = I + v^{(1)}e_1^T + v^{(2)}e_2^T + \cdots v^{(k)}e_k^T$

The L factor is a lower triangular matrix with ones on the diagonal. Column k of L, contains the multipliers l_{ik} used in the k-th step of Gaussian elimination.

A matrix A has an LU decomposition if

 $\det(A(1:k,1:k))
eq 0 \hspace{0.1in}$ for $\hspace{0.1in} k=1,\cdots,n-1.$

In this case, the determinant of A satisfies:

$$\det A = \det(U) = \prod_{i=1}^n u_{ii}$$

If, in addition, $oldsymbol{A}$ is nonsingular, then the LU factorization is unique.

3-17	GvL 3.{1,3,5} – Systems	3-18		GvL 3.{1,3,5} – Systems
3-17			3-18	

Practical use: Show how to use the LU factorization to solve linear systems with the same matrix A and different b's.

LU factorization of the matrix
$$A = \begin{pmatrix} 2 & 4 & 4 \\ 1 & 5 & 6 \\ 1 & 3 & 1 \end{pmatrix}$$
?

 \blacktriangle_6 Determinant of A?

True or false: "Computing the LU factorization of matrix A involves more arithmetic operations than solving a linear system Ax = b by Gaussian elimination".

3-19

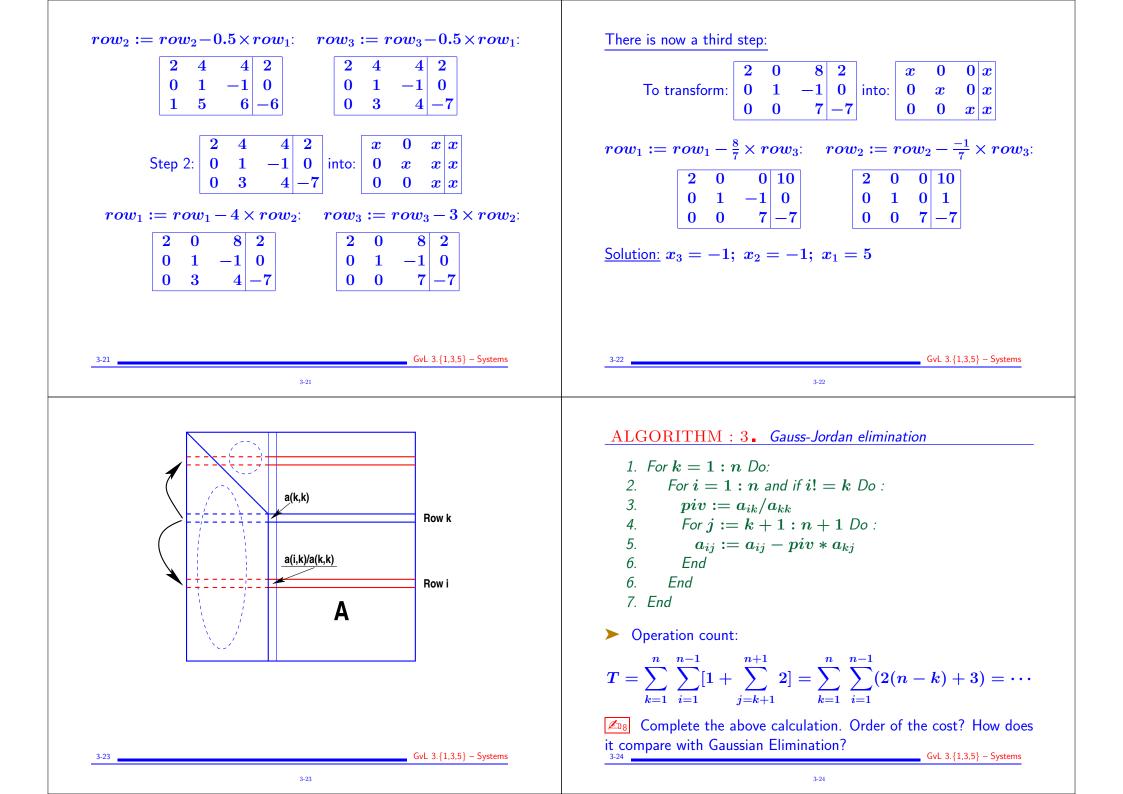
Gauss-Jordan Elimination

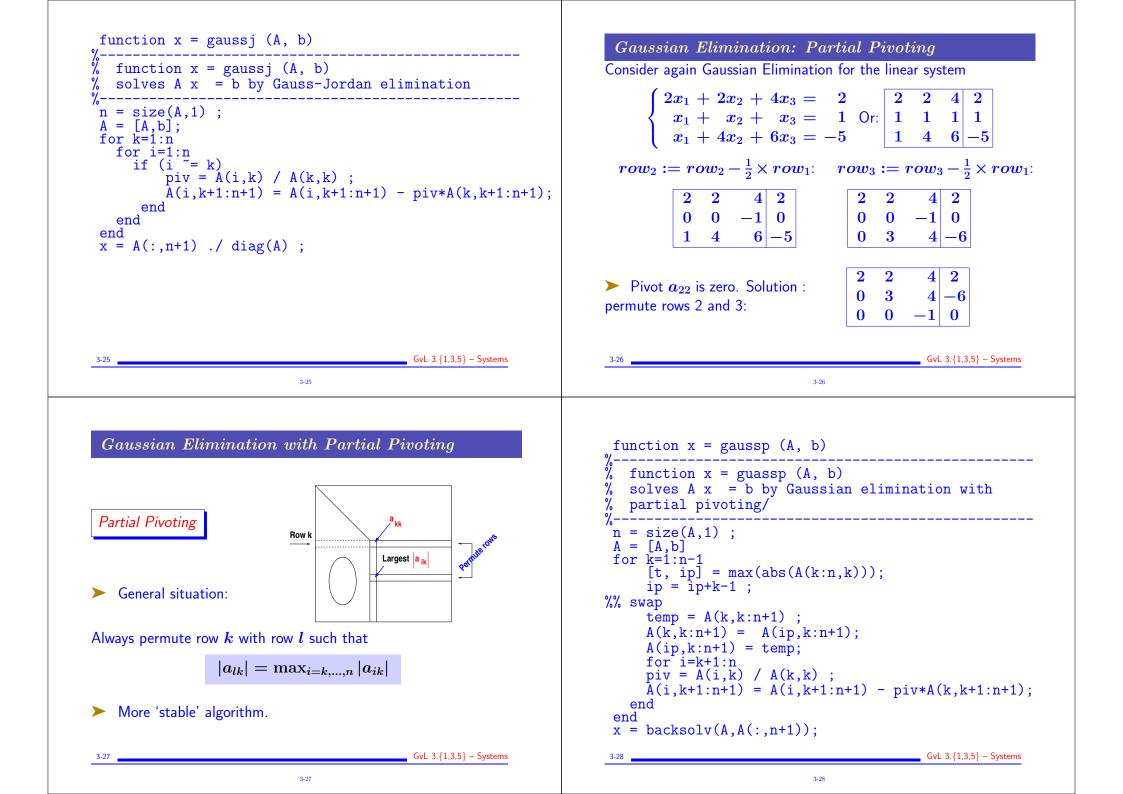
Principle of the method: We will now transform the system into one that is even easier to solve than triangular systems, namely a diagonal system. The method is very similar to Gaussian Elimination. It is just a bit more expensive.

Back to original system. Step 1 must transform:

2	4	4	2		\boldsymbol{x}	\boldsymbol{x}		
1	3	1	1	into:	0	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
1	5	6	-6		0	\boldsymbol{x}	x	\boldsymbol{x}

3-20 📕





Pivoting and permutation matrices

A permutation matrix is a matrix obtained from the identity \succ matrix by permuting its rows

> For example for the permutation $\pi = \{3, 1, 4, 2\}$ we obtain

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Important observation: the matrix PA is obtained from A by permuting its rows with the permutation π

$$(PA)_{i,:}=A_{\pi(i),:}$$

3-29

3-31

What is the matrix PA when 109

$$P = egin{pmatrix} 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \end{pmatrix} \ A = egin{pmatrix} 1 & 2 & 3 & 4 \ 5 & 6 & 7 & 8 \ 9 & 0 & -1 & 2 \ -3 & 4 & -5 & 6 \end{pmatrix} ?$$

Any permutation matrix is the product of interchange permuta-tions, which only swap two rows of I.

 \blacktriangleright Notation: E_{ij} = Identity with rows i and j swapped

partial pivoting:

 $G_{k+1}A_k = A_{k+1}$

3-30

of row k + 1 with row l > k + 1.

nd (2) $M_j^{-1} imes E_{k+1} = E_{k+1} imes ilde{M_j}^{-1}$ permuted Gauss vector:

$$egin{aligned} &(I+v^{(j)}e_j^T)E_{k+1} = E_{k+1}(I+E_{k+1}v^{(j)}e_j^T) \ &\equiv E_{k+1}(I+ ilde v^{(j)}e_j^T) \ &\equiv E_{k+1} ilde M_j \end{aligned}$$

t that above row k+1, the permutation in identity matrix.

3-32

Example: To obtain $\pi = \{3, 1, 4, 2\}$ from $\pi = \{1, 2, 3, 4\}$ - we need to swap $\pi(2) \leftrightarrow \pi(3)$ then $\pi(3) \leftrightarrow \pi(4)$ and finally $\pi(1) \leftrightarrow \pi(2)$. Hence:	> At each step of G.E. with $M_{k+1}E_k$
$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} = E_{1,2} \times E_{3,4} \times E_{2,3}$	where E_{k+1} encodes a swap o Notes: (1) $E_i^{-1} = E_i$ and for $k \geq j$, where $ ilde{M}_j$ has a p $(I+v^{(j)}e_j^T)E_{k+1} =$
\mathbb{Z}_{10} In the previous example where	
>> A = [1 2 3 4; 5 6 7 8; 9 0 -1 2 ; -3 4 -5 6]	=
Matlab gives $det(A) = -896$. What is $det(PA)$?	\blacktriangleright Here we have used the fact matrix E_{k+1} looks just like an

GvL 3.{1,3,5} – Systems

GvL 3.{1,3,5} - Systems

3-29

Result:

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

► In the end

3-33

2.

3.

4.

5.

6.

7.

For i = 2: n Do:

End

▲ 11 Operation count?

End

 $a_{i1} := a_{i1}/a_{11}$ (pivots)

 $a_{ij} := a_{ij} - a_{i1} * a_{1j}$

For j := 2 : n Do :

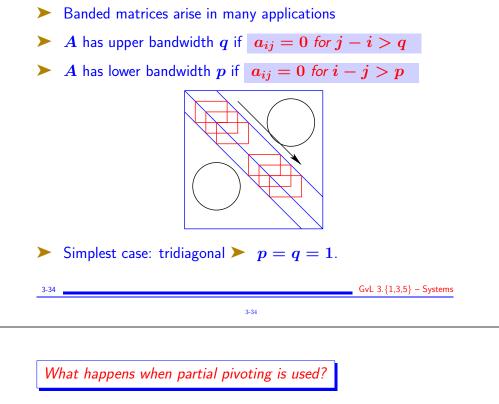
$$PA=LU$$
 with $P=E_{n-1}\cdots E_1$

3-33

First observation: Gaussian elimination (no pivoting) preserves

the initial banded form. Consider first step of Gaussian elimination:

Special case of banded matrices



If A has lower bandwidth p, upper bandwidth q, and if Gaussian elimination with partial pivoting is used, then the resulting U has upper bandwidth p + q. L has at most p + 1 nonzero elements per column (bandedness is lost).

> Simplest case: tridiagonal > p = q = 1.

Example:

$$A = egin{pmatrix} 1 & 1 & 0 & 0 & 0 \ 2 & 1 & 1 & 0 & 0 \ 0 & 2 & 1 & 1 & 0 \ 0 & 0 & 2 & 1 & 1 & 0 \ 0 & 0 & 2 & 1 & 1 \ 0 & 0 & 0 & 2 & 1 \end{pmatrix}$$

3-36

3-35

GvL 3.{1,3,5} - Systems

GvL 3.{1,3,5} - Systems

GvL 3.{1,3,5} – Systems

▶ If A has upper bandwidth q and lower bandwidth p then so is the resulting [L/U] matrix. ▶ Band form is preserved (induction)