
FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

• Brief review of floating point arithmetic

• Model of floating point arithmetic

• Notation, backward and forward errors
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Roundoff errors and floating-point arithmetic

ä The basic problem: The set A of all possible representable
numbers on a given machine is finite - but we would like to use this
set to perform standard arithmetic operations (+,*,-,/) on an infinite
set. The usual algebra rules are no longer satisfied since results of
operations are rounded.

ä Basic algebra breaks down in floating point arithmetic.

Example: In floating point arithmetic.

a+ (b+ c) ! = (a+ b) + c

-1 Matlab experiment: For 10,000 random numbers find number of
instances when the above is true. Same thing for the multiplication..
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Floating point representation:

Real numbers are represented in two parts: A mantissa (significand)
and an exponent. If the representation is in the base β then:

x = ±(.d1d2 · · · dt)βe

ä .d1d2 · · · dt is a fraction in the base-β representation (Generally
the form is normalized in that d1 6= 0), and e is an integer

ä Often, more convenient to rewrite the above as:

x = ±(m/βt)× βe ≡ ±m× βe−t

ä Mantissa m is an integer with 0 ≤ m ≤ βt − 1.
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Machine precision - machine epsilon

ä Notation : fl(x) = closest floating point representation
of real number x (’rounding’)

ä When a number x is very small, there is a point when 1+x ==
1 in a machine sense. The computer no longer makes a difference
between 1 and 1 + x.

Machine epsilon: The smallest number ε such that 1 + ε is a

float that is different from one, is called machine epsilon. Denoted
by macheps or eps, it represents the distance from 1 to the next
larger floating point number.

ä With previous representation, eps is equal to β−(t−1).
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Example: In IEEE standard double precision, β = 2, and t =
53 (includes ‘hidden bit’). Therefore eps = 2−52.

Unit Round-off A real number x can be approximated by a floating
number fl(x) with relative error no larger than u = 1

2
β−(t−1).

ä u is called Unit Round-off.

ä In fact can easily show:

fl(x) = x(1 + δ) with |δ| < u

-2 Matlab experiment: find the machine epsilon on your computer.

ä Many discussions on what conditions/ rules should be satisfied
by floating point arithmetic. The IEEE standard is a set of standards
adopted by many CPU manufacturers.
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Rule 1.

fl(x) = x(1 + ε), where |ε| ≤ u

Rule 2. For all operations � (one of +,−, ∗, /)

fl(x� y) = (x� y)(1 + ε�), where |ε�| ≤ u

Rule 3. For +, ∗ operations

fl(a� b) = fl(b� a)

-3 Matlab experiment: Verify experimentally Rule 3 with 10,000
randomly generated numbers ai, bi.
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Example: Consider the sum of 3 numbers: y = a+ b+ c.

ä Done as fl(a+ b+ c) = fl(fl(a+ b) + c)

fl(a+ b) = (a+ b)(1 + ε1)

fl(a+ b+ c) = [(a+ b)(1 + ε1) + c] (1 + ε2)

= a(1 + ε1)(1 + ε2) + b(1 + ε1)(1 + ε2)

+c(1 + ε2)

= a(1 + θ1) + b(1 + θ2) + c(1 + θ3)

with 1+θ1 = 1+θ2 = (1+ε1)(1+ε2) and 1+θ3 = (1+ε2)

For a longer sum we would have something like:

1 + θj = (1 + ε1)(1 + ε2)(· · · )(1 + εn−j)
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ä Remark on order of the sum. If y1 = fl(fl(a+ b) + c):

y1 = [(a+ b+ c) + (a+ b)ε1)] (1 + ε2)

= (a+ b+ c)

[
1 +

a+ b

a+ b+ c
ε1(1 + ε2) + ε2

]

So disregarding the high order term ε1ε2

fl(fl(a+ b) + c) = (a+ b+ c)(1 + ε3)

ε3 ≈
a+ b

a+ b+ c
ε1 + ε2
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ä If we redid the computation as y2 = fl(a + fl(b + c)) we
would find

fl(a+ fl(b+ c)) = (a+ b+ c)(1 + ε4)

ε4 ≈
b+ c

a+ b+ c
ε1 + ε2

ä The error is amplified by the factor (a+ b)/y in the first case
and (b+ c)/y in the second case.

ä In order to sum n numbers accurately, it is better to start with
small numbers first. [However, sorting before adding is not worth it.]

ä But watch out if the numbers have mixed signs!

4-9 GvL 2.7 – Float

4-9

The absolute value notation

ä For a given vector x, |x| is the vector with components |xi|,
i.e., |x| is the component-wise absolute value of x.

ä Similarly for matrices:

|A| = {|aij|}i=1,...,m; j=1,...,n

ä An obvious result: The basic inequality

|fl(aij)− aij| ≤ u |aij|
translates into

|fl(A)−A| ≤ u |A|

ä A ≤ B means aij ≤ bij for all 1 ≤ i ≤ m; 1 ≤ j ≤ n
4-10 GvL 2.7 – Float

4-10

Backward and forward errors

ä Assume the approximation ŷ to y = alg(x) is computed by
some algorithm with arithmetic precision ε. Possible analysis: find
an upper bound for the Forward error

|∆y| = |y − ŷ|

ä This is not always easy.

Alternative question: find equivalent perturbation on initial data

(x) that produces the result ŷ. In other words, find ∆x so that:

alg(x+ ∆x) = ŷ

ä The value of |∆x| is called the backward error. An analysis to
find an upper bound for |∆x| is called Backward error analysis.
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Example: A =

(
a b
0 c

)
B =

(
d e
0 f

)

Consider the product: fl(A.B) =
[
ad(1 + ε1) [ae(1 + ε2) + bf(1 + ε3)] (1 + ε4)

0 cf(1 + ε5)

]

with εi ≤ u , for i = 1, ..., 5. Result can be written as:
[
a b(1 + ε3)(1 + ε4)
0 c(1 + ε5)

] [
d(1 + ε1) e(1 + ε2)(1 + ε4)

0 f

]

ä So fl(A.B) = (A+ EA)(B + EB).

ä Backward errors EA, EB satisfy:

|EA| ≤ 2u |A|+ O(u 2) ; |EB| ≤ 2u |B|+ O(u 2)
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ä When solving Ax = b by Gaussian Elimination, we will see that
a bound on ‖ex‖ such that this holds exactly:

A(xcomputed + ex) = b

is much harder to find than bounds on ‖EA‖, ‖eb‖ such that this
holds exactly:

(A+ EA)xcomputed = (b+ eb).

Note: In many instances backward errors are more meaningful than
forward errors: if initial data is accurate only to 4 digits say, then
my algorithm for computing x need not guarantee a backward error
of less then 10−10 for example. A backward error of order 10−4 is
acceptable.
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Error Analysis: Inner product

ä Inner products are in the innermost parts of many calculations.
Their analysis is important.

Lemma: If |δi| ≤ u and nu < 1 then

Πn
i=1(1 + δi) = 1 + θn where |θn| ≤

nu

1− nu

ä Common notation γn ≡ nu
1−nu

-4 Prove the lemma [Hint: use induction]
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ä Can use the following simpler result:

Lemma: If |δi| ≤ u and nu < .01 then

Πn
i=1(1 + δi) = 1 + θn where |θn| ≤ 1.01nu

Example: Previous sum of numbers can be written

fl(a+ b+ c) = fl(fl(a+ b) + c)

= [(a+ b)(1 + ε1) + c] (1 + ε2)

= a(1 + ε1)(1 + ε2) + b(1 + ε1)(1 + ε2) +

c(1 + ε2)

= a(1 + θ1) + b(1 + θ2) + c(1 + θ3)

= exact sum of slightly perturbed inputs,

where all θi’s satisfy |θi| ≤ 1.01nu (here n = 2).
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ä Backward error result (output is exact sum of perturbed input)

ä Alternatively, can write ‘forward’ bound:
|fl(a+ b+ c)− (a+ b+ c)| ≤ |aθ1|+ |bθ2|+ |cθ3|.

(bound on | output - exact sum | )
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Analysis of inner products (cont.)

Consider sn = fl(x1 ∗ y1 + x2 ∗ y2 + · · ·+ xn ∗ yn)

ä In what follows ηi’s come from ∗, εi’s come from +

ä They satisfy: |ηi| ≤ u and |εi| ≤ u .

ä The inner product sn is computed as:

1. s1 = fl(x1y1) = (x1y1)(1 + η1)

2. s2 = fl(s1 + fl(x2y2)) = fl(s1 + x2y2(1 + η2))
= (x1y1(1 + η1) + x2y2(1 + η2)) (1 + ε2)
= x1y1(1 + η1)(1 + ε2) + x2y2(1 + η2)(1 + ε2)

3. s3 = fl(s2 + fl(x3y3)) = fl(s2 + x3y3(1 + η3))
= (s2 + x3y3(1 + η3))(1 + ε3)
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Expand: s3 = x1y1(1 + η1)(1 + ε2)(1 + ε3)

+x2y2(1 + η2)(1 + ε2)(1 + ε3)

+x3y3(1 + η3)(1 + ε3)

ä Induction would show that [with convention that ε1 ≡ 0]

sn =

n∑

i=1

xiyi(1 + ηi)

n∏

j=i

(1 + εj)

Q: How many terms in the coefficient of xiyi do we have?

A:
• When i > 1 : 1 + (n− i+ 1) = n− i+ 2
• When i = 1 : n (since ε1 = 0 does not count)

ä Bottom line: always ≤ n.
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ä For each of these products

(1 + ηi)
∏n
j=i(1 + εj) = 1 + θi, with |θi| ≤ γn so:

sn =
∑n

i=1 xiyi(1 + θi) with |θi| ≤ γn or:

fl
(∑n

i=1 xiyi
)

=
∑n

i=1 xiyi +
∑n

i=1 xiyiθi with |θi| ≤ γn
ä This leads to the final result (forward form)

∣∣∣∣∣fl
(

n∑

i=1

xiyi

)
−

n∑

i=1

xiyi

∣∣∣∣∣ ≤ γn
n∑

i=1

|xi||yi|

ä or (backward form)

fl

(
n∑

i=1

xiyi

)
=

n∑

i=1

xiyi(1 + θi) with |θi| ≤ γn
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Main result on inner products:

ä Backward error expression:

fl(xTy) = [x .∗ (1 + dx)]
T [y .∗ (1 + dy)]

where ‖d�‖∞ ≤ 1.01nu , � = x, y.

ä Can show equality valid even if one of the dx, dy absent.

ä Forward error expression: |fl(xTy)− xTy| ≤ γn |x|T |y|

with 0 ≤ γn ≤ 1.01nu .

ä Elementwise absolute value |x| and multiply .∗ notation.

ä Above assumes nu ≤ .01.
For u = 2.0× 10−16, this holds for n ≤ 4.5× 1013.
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ä Consequence for matrix products: (A ∈ Rm×n, B ∈ Rn×p)

|fl(AB)−AB| ≤ γn |A||B|

ä Another way to write the result (less precise) is

|fl(xTy)− xTy| ≤ n u |x|T |y|+ O(u 2)
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-5 Assume you use single precision for which you have u = 2.×
10−6. What is the largest n for which nu ≤ 0.01 holds? Any
conclusions for the use of single precision arithmetic?

-6 What does the main result on inner products imply for the case
when y = x? [Contrast the relative accuracy you get in this case
vs. the general case when y 6= x]
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-7 Show for any x, y, there exist ∆x,∆y such that

fl(xTy) = (x+ ∆x)Ty, with |∆x| ≤ γn|x|
fl(xTy) = xT(y + ∆y), with |∆y| ≤ γn|y|

-8 (Continuation) Let A an m × n matrix, x an n-vector, and
y = Ax. Show that there exist a matrix ∆A such

fl(y) = (A+ ∆A)x, with |∆A| ≤ γn|A|

-9 (Continuation) From the above derive a result about a column
of the product of two matrices A and B. Does a similar result hold
for the product AB as a whole?
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Error Analysis for linear systems: Triangular case

ä Recall

ALGORITHM : 1 Back-Substitution algorithm

For i = n : −1 : 1 do:
t := bi
For j = i+ 1 : n do }

t := t− (ai,i+1:n, xi+1:n)
= t− an inner product

t := t− aijxj
End
xi = t/aii

End

ä We must require that each aii 6= 0

ä Round-off error (use previous results for (·, ·))?

4-24 GvL 2.7 – Float

4-24



The computed solution x̂ of the triangular system Ux = b
computed by the back-substitution algorithm satisfies:

(U + E)x̂ = b

with

|E| ≤ n u |U |+ O(u 2)

ä Backward error analysis. Computed x solves a slightly perturbed
system.

ä Backward error not large in general. It is said that triangular
solve is “backward stable”.
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Error Analysis for Gaussian Elimination

If no zero pivots are encountered during Gaussian elimination (no
pivoting) then the computed factors L̂ and Û satisfy

L̂Û = A+H

with

|H| ≤ 3(n− 1) × u
(
|A|+ |L̂| |Û |

)
+ O(u 2)

Solution x̂ computed via L̂ŷ = b and Û x̂ = ŷ is s. t.

(A+ E)x̂ = b with

|E| ≤ nu
(
3|A| + 5 |L̂| |Û |

)
+ O(u 2)
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ä “Backward” error estimate.

ä |L̂| and |Û | are not known in advance – they can be large.

ä What if partial pivoting is used?

ä Permutations introduce no errors. Equivalent to standard LU
factorization on matrix PA.

ä |L̂| is small since lij ≤ 1. Therefore, only U is “uncertain”

ä In practice partial pivoting is “stable” – i.e., it is highly unlikely
to have a very large U .
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Supplemental notes: Floating Point Arithmetic

In most computing systems, real numbers are represented in two
parts: A mantissa and an exponent. If the representation is in the
base β then:

x = ±(.d1d2 · · · dm)ββ
e

ä .d1d2 · · · dm is a fraction in the base-β representation

ä e is an integer - can be negative, positive or zero.

ä Generally the form is normalized in that d1 6= 0.
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Example: In base 10 (for illustration)

1. 1000.12345 can be written as

0.10001234510 × 104

2. 0.000812345 can be written as

0.81234510 × 10−3

ä Problem with floating point arithmetic: we have to live with
limited precision.

Example: Assume that we have only 5 digits of accuray in the
mantissa and 2 digits for the exponent (excluding sign).

.d1 d2 d3 d4 d5 e1 e2
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Try to add 1000.2 = .10002e+03 and 1.07 = .10700e+01:

1000.2 = .1 0 0 0 2 0 4 ; 1.07 = .1 0 7 0 0 0 1

First task: align decimal points. The one with smallest exponent

will be (internally) rewritten so its exponent matches the largest one:

1.07 = 0.000107 × 104

Second task: add mantissas:

0. 1 0 0 0 2
+ 0. 0 0 0 1 0 7
= 0. 1 0 0 1 2 7
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Third task:

round result. Result has 6 digits - can use only 5 so we can

ä Chop result: .1 0 0 1 2 ;

ä Round result: .1 0 0 1 3 ;

Fourth task:

Normalize result if needed (not needed here)

result with rounding: .1 0 0 1 3 0 4 ;

-10 Redo the same thing with 7000.2 + 4000.3 or 6999.2 + 4000.3.
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The IEEE standard

32 bit (Single precision) :

± 8 bits ← 23 bits →

si
gn ︸ ︷︷ ︸

exponent
︸ ︷︷ ︸

mantissa

ä Number is scaled so it is in the form 1.d1d2...d23 × 2e - but
leading one is not represented.

ä e is between -126 and 127.

ä [Here is why: Internally, exponent e is represented in “biased” form: what is

stored is actually c = e + 127 – so the value c of exponent field is between 1

and 254. The values c = 0 and c = 255 are for special cases (0 and∞)]
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64 bit (Double precision) :

± 11 bits ← 52 bits →

si
gn ︸ ︷︷ ︸

exponent
︸ ︷︷ ︸

mantissa

ä Bias of 1023 so if e is the actual exponent the content of the
exponent field is c = e+ 1023

ä Largest exponent: 1023; Smallest = -1022.

ä c = 0 and c = 2047 (all ones) are again for 0 and∞
ä Including the hidden bit, mantissa has total of 53 bits (52 bits
represented, one hidden).

ä In single precision, mantissa has total of 24 bits (23 bits repre-
sented, one hidden).

4-33 GvL 2.7 – FloatSuppl

4-33

-11 Take the number 1.0 and see what will happen if you add
1/2, 1/4, ...., 2−i. Do not forget the hidden bit!

Hidden bit (Not represented)
Expon. ↓ ← 52 bits →

e 1 1 0 0 0 0 0 0 0 0 0 0

e 1 0 1 0 0 0 0 0 0 0 0 0

e 1 0 0 1 0 0 0 0 0 0 0 0

.......
e 1 0 0 0 0 0 0 0 0 0 0 1

e 1 0 0 0 0 0 0 0 0 0 0 0

(Note: The ’e’ part has 12 bits and includes the sign)

ä Conclusion

fl(1 + 2−52) 6= 1 but: fl(1 + 2−53) == 1 !!
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Special Values

ä Exponent field = 00000000000 (smallest possible value)
No hidden bit. All bits == 0 means exactly zero.

ä Allow for unnormalized numbers,
leading to gradual underflow.

ä Exponent field = 11111111111 (largest possible value)
Number represented is ”Inf” ”-Inf” or ”NaN”.
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Recent trend: GPUs

ä Graphics Processor Units: Very fast boards attached to CPUs for
heavy-duty computing

ä e.g., NVIDIA V100 can deliver 112 Teraflops (1 Teraflops =
1012 operations per second) for certain types of computations.

ä Single precision much faster than double ...

ä ... and there is also “half-precision” which is ≈ 16 times faster
than standard 64bit arithmetic

ä Used primarily for Deep-learning
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