FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

e Brief review of floating point arithmetic
e Model of floating point arithmetic

e Notation, backward and forward errors

Roundoff errors and floating-point arithmetic

»  The basic problem: The set A of all possible representable
numbers on a given machine is finite - but we would like to use this
set to perform standard arithmetic operations (+,*,-,/) on an infinite
set. The usual algebra rules are no longer satisfied since results of
operations are rounded.

» Basic algebra breaks down in floating point arithmetic.

In floating point arithmetic.

a+(b+c)!'= (a+b)+c

Matlab experiment: For 10,000 random numbers find number of
instances when the above is true. Same thing for the multiplication..

42 GvlL 2.7 - Float

Floating point representation:

Real numbers are represented in two parts: A mantissa (significand)
and an exponent. If the representation is in the base 3 then:

r = :l:(.dldz ©o0o0 dt),@e

» .dydy - - - dyis a fraction in the base-(3 representation (Generally
the form is normalized in that dy # 0), and e is an integer

»  Often, more convenient to rewrite the above as:

x==x(m/B%) x B3°=+tm x 3¢t

» Mantissa m is an integer with 0 < m < 3t — 1.

43 GvL 2.7 - Float

43

Machine precision - machine epsilon

» Notation : fl(x) = closest floating point representation
of real number x ('rounding’)

» When a number x is very small, there is a point when 14+x ==
1 in a machine sense. The computer no longer makes a difference
between 1 and 1 + .

Machine epsilon: | The smallest number € such that 1 + € is a

tloat that is different from one, is called machine epsilon. Denoted
by macheps or eps, it represents the distance from 1 to the next
larger floating point number.

»  With previous representation, eps is equal to 3~(¢—1.

4-4 GvL 2.7 - Float

4-4




In IEEE standard double precision, 3 = 2, and t =
53 (includes ‘hidden bit'). Therefore eps = 2752,

Unit Round-off A real number & can be approximated by a floating
number fl(x) with relative error no larger than u = %B_(t_l).

» u is called Unit Round-off.

» In fact can easily show:

fl(x) = (1 + §) with |§] < u

Matlab experiment: find the machine epsilon on your computer.

»  Many discussions on what conditions/ rules should be satisfied
by floating point arithmetic. The IEEE standard is a set of standards
adopted by many CPU manufacturers.

45 GvlL 2.7 - Float

Rule 1.

fl(x) =x(1 +€), where |¢] <u

Rule 2. | For all operations ® (one of +, —, *, /)

fllzx@y) =(xOy)(1+e€), where [eg] <u

Rule 3. | For +, % operations

fl(a®b) = fl(b® a)

Matlab experiment: Verify experimentally Rule 3 with 10,000
randomly generated numbers a;, b;.

4-6 GvlL 2.7 - Float

Consider the sum of 3 numbers: y = a + b + c.
» Done as fl(a+ b+ c) = fl(fl(a +b) + ¢)
flla+b) = (a+b)(1+e)
flla+b+c) =[(a+b)(1+¢€)+c](1+e€)
=a(l+ €)1+ e)+bl+e€)(l+ e)
-|—C(1 -|— 62)

withl+60; =140 = (1—|—61)(1—|—62) and 14+605 = (1—|—62)

For a longer sum we would have something like:

1+6;=0+e)1+e)(- )1+ eny)

» Remark on order of the sum. If y; = fI(fl(a 4+ b) + ¢):

yl = [(a+b+c)+ (a+Db)e)] (1 + )

+b

a
=(a+b+c) 1+—a—|—b—|—c€1(1+€2)+62

So disregarding the high order term €1€5

JUfl(a+b)+c) = (a+b+c)(1+ e)
a-+b
€3 X ———€1 t+ €

at+b+ece

48 GvL 2.7 - Float




» I we redid the computation as ys = fl(a + fl(b + ¢)) we
would find

flla+ fl(b+c)) = (a+b+c)(1 + €4)
b+ec
€ R ——€1 + €

at+b+ec

» The error is amplified by the factor (@ 4+ b)/y in the first case
and (b + ¢)/y in the second case.

» In order to sum m numbers accurately, it is better to start with
small numbers first. [However, sorting before adding is not worth it.]

»  But watch out if the numbers have mixed signs!

49 Gvl 2.7 - Float

The absolute value notation

»  For a given vector x, || is the vector with components |x;],
i.e., || is the component-wise absolute value of x.

»  Similarly for matrices:

|A| = {laij| }iz1,....m; j=1,...n
»  An obvious result: The basic inequality
|fl(ai;) — aij] < u |ay]
translates into

|f1(A) — Al < u |A]

» A< Bmeansa;; <bjforall1<:<m; 1<j53<n

4-10 GvlL 2.7 - Float

4-10

Backward and forward errors

»  Assume the approximation g to y = alg(x) is computed by
some algorithm with arithmetic precision €. Possible analysis: find
an upper bound for the Forward error

|Ay| = |y — 9|

» This is not always easy.

Alternative question: | find equivalent perturbation on initial data

() that produces the result §. In other words, find Az so that:

alg(x + Azx) =g

»  The value of |Ax| is called the backward error. An analysis to
find an upper bound for |Ax| is called Backward error analysis.

4-11 GvL 2.7 - Float

4-11

a=(30) B=(3%)

Consider the product: fl(A.B) =

[ad(l +e) | [ae(l +e) +bf(1+ )] (1 + e4)]
0 | cf(1+es)

with €; < u, forz = 1,...,5. Result can be written as:

laﬂ b(1chle£(€t;L 64)] ld(l T)el) e(1+ e;)(l + 64)]

> So fl(A.B) = (A + E,)(B + Eg).

» Backward errors E 4, Ep satisfy:
|Eal <2ulA|+O0(u?;  |Ep| <2u|B|+O0(u?)

4-12 GvL 2.7 - Float

4-12




» When solving Ax = b by Gaussian Elimination, we will see that
a bound on ||e;|| such that this holds exactly:

A(mcomputed + eaz) =b

is much harder to find than bounds on || E 4|, ||es|| such that this
holds exactly:

(A + EA)wcomputed = (b -+ eb).

Note: In many instances backward errors are more meaningful than
forward errors: if initial data is accurate only to 4 digits say, then
my algorithm for computing  need not guarantee a backward error
of less then 10719 for example. A backward error of order 10=4 is
acceptable.

413 GvlL 2.7 - Float

4-13

Error Analysis: Inner product

» Inner products are in the innermost parts of many calculations.
Their analysis is important.

Lemma: If |6;] < u and nu < 1 then
u

I (1 +6;) =1+6, where [0,] < L
1 — nu

nu
1—nu

Prove the lemma [Hint: use induction]

»  Common notation vy, =

4-14 GvlL 2.7 - Float

4-14

»  Can use the following simpler result:

Lemma: If |6;] < u and mu < .01 then
IT? (1+46;) =146, where |0, <1.01nu

Previous sum of numbers can be written
flla+b+c) = fl(fl(a+b) +c)
= [(a+b)(1+€1)+c](1+e)
=a(l+e€)(1+e)+bl+e)1+e)+
C(]. + 62)
= CL(l + 01) -I- b(l + 02) -I- C(]_ + 03)

= exact sum of slightly perturbed inputs,

where all ;s satisfy |0;| < 1.01nu (here n = 2).

4-15

»  Backward error result (output is exact sum of perturbed input)

»  Alternatively, can write ‘forward’ bound:

|flla4+b+4+c) — (a+ b+ c)| < |aby| + |bO2| + |cOs].

(bound on | output - exact sum | )

4-16 GvL 2.7 - Float

4-16




Analysis of inner products (cont.)

Consider Sp=fl(x1*y1 + Taxyas+ -+ + Ty * Yp)

» In what follows m;'s come from *, ¢€;'s come from +
»  They satisfy: |n;| < u and |g;| < u.

»  The inner product s,, is computed as:

L s1 = fl(z1y1) = (z1y1) (1 + m)

2. 83 = fl(s1 4 fl(x2y2)) = fl(s1 + x2y2(1 + 12))
= (1y1(1 + m) + z2y2(1 + 12)) (1 + €2)
=z1y1(1 + m) (1 + €) + z2y2(1 + 172) (1 + €2)

3. s3 = fl(s2 + fl(x3ys)) = Fl(s2 + x3y3(1 + m3))
= (82 + z3ys(1 + n3)) (1 + €3)

417 GvlL 2.7 - Float

Expand: s3 = x1y1(1 4+ m1) (1 + €2)(1 + €3)
+22y2(1 + 12) (1 + €2) (1 + €3)
+x3ys(1 + n3) (1 + €3)

» Induction would show that [with convention that €; = 0]
Sn = Z z;iyi(1 + i) H(l + €;)
=1 P

@: How many terms in the coefficient of x;y; do we have?

e Wheni >1:14+4(n—i+1)=n—1+2

AT e Wheni=1:n (since €; = 0 does not count)

»  Bottom line: always < n.

4-18 GvlL 2.7 - Float

4-18

»  For each of these products
(1 +m) [T +e€) =1+6; with [6;] <7, so

S, = 2?21 zyi(L+6;) with [0;| <~, or

FULCT miys) = Yo @y + Do Ty with  |0;] <,

»  This leads to the final result (forward form)

Ji (Z $zyz> = @iy < Y |zillyil
i=1 i=1 i=1

» or (backward form)

fl (Z wzyz) = Zwiyi(l +6;) with 6;] < v,
i—1

1=1

4-19 GvL 2.7 - Float

4-19

Main result on inner products:

»  Backward error expression:

fi(aTy) = [z (1 + da)]["[y -+ (1 + dy)]

where ||do|ec < 1.01nu, O =z, y.

» Can show equality valid even if one of the d,, d, absent.

»  Forward error expression: |fl(xTy) — xTy| < n |2|T |yl

with 0 < 7, < 1.01nu.
»  Elementwise absolute value || and multiply .* notation.

»  Above assumes nu < .01.
Foru = 2.0 x 10716, this holds for n < 4.5 x 1013

4-20 GvL 2.7 - Float




» Consequence for matrix products: (A € R™*", B € R"*P)
|fl(AB) — AB| < v, |A||B|

»  Another way to write the result (less precise) is

|fl(zTy) — 2Tyl < nu |z|T |y| + O(u?)

4-21 GvlL 2.7 - Float

Assume you use single precision for which you have u = 2. X
1076, What is the largest n for which nu < 0.01 holds? Any
conclusions for the use of single precision arithmetic?

What does the main result on inner products imply for the case
when y = x? [Contrast the relative accuracy you get in this case
vs. the general case when y # x|

4-22 GvlL 2.7 - Float

4-22

Show for any x, y, there exist Az, Ay such that
fl(z"y) = (z 4+ Azx)Ty, with [Az| < ||
fl(@"y) = 2" (y + Ay), with |Ay| < |yl
(Continuation) Let A an ™ X m matrix,  an n-vector, and
y = Ax. Show that there exist a matrix A A such
fl(y) = (A+ Ad)z, with [AA| < 7|4
(Continuation) From the above derive a result about a column

of the product of two matrices A and B. Does a similar result hold
for the product AB as a whole?

4-23 GvL 2.7 - Float

423

Error Analysis for linear systems: Triangular case

»  Recall

ALGORITHM : 1. Back-Substitution algorithm

Fort =n:—1:1 do:
t:= bl
Forj:’[:—f-]_:ndo
} t:=t— (ai,z'+1:m iBi+1:n)

t:=t—a;x; ’
R = t — an inner product

End
r; = t/aii
End

»  We must require that each a;; # 0

»  Round-off error (use previous results for (-, +))?

4-24 GvL 2.7 - Float




The computed solution & of the triangular system Ux = b
computed by the back-substitution algorithm satisfies:

(U+E)x=0b
with
|E| <nu |U|+ O(u?)

» Backward error analysis. Computed « solves a slightly perturbed
system.

»  Backward error not large in general. It is said that triangular
solve is “backward stable”.

4-25 GvlL 2.7 - Float

Error Analysis for Gaussian Elimination

If no zero pivots are encountered during Gaussian elimination (no
pivoting) then the computed factors L and U satisfy

LU=A+H
with
|H| < 3(n—1) x u (|A|+ |L| |U]) + O(u?)

Solution & computed via Lj = band UZ = g is s. t.

(A + E)& = b with

|E| < nu (3|A| +5|L||U]) + O(u?)

4-26 GvlL 2.7 - Float

4-26

»  “Backward” error estimate.
» |L| and |U] are not known in advance — they can be large.
»  What if partial pivoting is used?

»  Permutations introduce no errors. Equivalent to standard LU
factorization on matrix PA.

» |L| is small since I;; < 1. Therefore, only U is “uncertain”

» In practice partial pivoting is “stable” —i.e., it is highly unlikely
to have a very large U.

4-27 GvL 2.7 - Float

Supplemental notes: Floating Point Arithmetic

In most computing systems, real numbers are represented in two
parts: A mantissa and an exponent. If the representation is in the
base 3 then:

r = :I:(.d1d2 ©00 dm)ﬂﬂe

» .dydy---d,, is a fraction in the base-3 representation
» e is an integer - can be negative, positive or zero.

»  Generally the form is normalized in that d; # O.

4-28 GvL 2.7 - FloatSuppl




Example: | In base 10 (for illustration)

1. 1000.12345 can be written as
0.100012345,, x 10*

2. 0.000812345 can be written as
0.812345:7 x 1073

»  Problem with floating point arithmetic: we have to live with

Try to add 1000.2 = .10002e+03 and 1.07 = .10700e+01:
1000.2 =|.1/0/0]0/2]0 4|;  1.07 =.1/0/7/0]0]0[1]

First task: | align decimal points. The one with smallest exponent

will be (internally) rewritten so its exponent matches the largest one:

1.07 = 0.000107 x 10*

Second task: | add mantissas:

limited precision. 0010002
+0.000107
Assume that we have only 5 digits of accuray in the — 0100127
mantissa and 2 digits for the exponent (excluding sign). '
-di|dz|ds|da|d5] e ]e;)
4-29 Gyl 2.7 - FloatSuppl 4-30 GvL 2.7 - FloatSuppl
Third task: The IEEFE standard

round result. Result has 6 digits - can use only 5 so we can

»  Chop result: ﬂm ;
»  Round result: mﬂ ;

Fourth task:
Normalize result if needed (not needed here)

result with rounding: ‘.1‘0‘0‘1‘3“0‘4 ;
Redo the same thing with 7000.2 + 4000.3 or 6999.2 + 4000.3.

4-31 GvL 2.7 — FloatSuppl

4-31

32 bit | (Single precision) :

|| 8bits [+ 23 bits —|

go N / \u ~~ J
& exponent mantissa

»  Number is scaled so it is in the form 1.dids>...d23 X 2€ - but
leading one is not represented.

» e is between -126 and 127.

» [Here is why: Internally, exponent e is represented in “biased” form: what is
stored is actually ¢ = e + 127 — so the value ¢ of exponent field is between 1

and 254. The values ¢ = 0 and ¢ = 255 are for special cases (0 and 00)]

4-32 GvL 2.7 - FloatSuppl

432




64 bit | (Double precision) :

|+ 11bits | < 52bits — |

bco N— ~~ v
‘% exponent mantissa

» Bias of 1023 so if e is the actual exponent the content of the
exponent field is ¢ = e 4+ 1023

» Largest exponent: 1023; Smallest = -1022.
» ¢ = 0and ¢ = 2047 (all ones) are again for 0 and oo

» Including the hidden bit, mantissa has total of 53 bits (52 bits
represented, one hidden).

» In single precision, mantissa has total of 24 bits (23 bits repre-
sented, one hidden).

4-33 Gyl 2.7 - FloatSuppl

4-33

Take the number 1.0 and see what will happen if you add
1/2,1/4,....,27% Do not forget the hidden bit!

Hidden bit  (Not represented)
Expon. | < 52 bits —

e 1]1/0/0/0/0/0/0|0|0|0O|0O
e 1]0/1/0/0/0/0/0|0/0|0
e |1|0/0/1/0/0/0|0|0O|0 OO

o

e |10/00/0/0|0j00|0]0|1
e |1/0/0/000/0|0/0|O0]O

(Note: The 'e’ part has 12 bits and includes the sign)
» Conclusion
Fl(1+27°2) # 1 but: fI(1+2753) ==11

4-34 GvL 2.7 - FloatSuppl

4-34

Special Values

» Exponent field = 00000000000 (smallest possible value)
No hidden bit. All bits == 0 means exactly zero.

»  Allow for unnormalized numbers,
leading to gradual underflow.

» Exponent field = 11111111111 (largest possible value)
Number represented is " Inf" "-Inf" or "NaN".

4-35 GvL 2.7 — FloatSuppl

435

Recent trend: GPUs

» Graphics Processor Units: Very fast boards attached to CPUs for
heavy-duty computing

» eg., NVIDIA V100 can deliver 112 Teraflops (1 Teraflops =
102 operations per second) for certain types of computations.

» Single precision much faster than double ...

» ... and there is also “half-precision” which is = 16 times faster
than standard 64bit arithmetic

»  Used primarily for Deep-learning

4-36 GvL 2.7 - FloatSuppl

436




