# SYMMETRIC POSITIVE DEFINITE (SPD) MATRICES SPD LINEAR SYSTEMS

- Symmetric positive definite matrices.
- The  $LDL^T$  decomposition; The Cholesky factorization

**Positive-Definite Matrices** 

A real matrix is said to be positive definite if

$$(Au,u)>0$$
 for all  $u
eq 0$   $u\in \ \mathbb{R}^n$ 

Let A be a real positive definite matrix. Then there is a scalar  $\alpha > 0$  such that

$$(Au,u)\geq lpha\|u\|_2^2.$$

Consider now the case of Symmetric Positive Definite (SPD) matrices.

$$\blacktriangleright$$
 Consequence 1:  $A$  is nonsingular

6-2

• Consequence 2: the eigenvalues of A are (real) positive

GvL 4 – SPD

#### A few properties of SPD matrices

 $\blacktriangleright$  Diagonal entries of A are positive

> Recall: the k-th principal submatrix  $A_k$  is the  $k \times k$  submatrix of A with entries  $a_{ij}, 1 \leq i, j \leq k$  (Matlab: A(1:k, 1:k)).

 $\blacksquare_1$  Each  $A_k$  is SPD

6-3

**Consequence**:  $Det(A_k) > 0$  for  $k = 1, \dots, n$ . In fact A is SPD iff this condition holds.

11 If A is SPD then for any  $n \times k$  matrix X of rank k, the matrix  $X^T A X$  is SPD.

► The mapping :  $x, y \rightarrow (x, y)_A \equiv (Ax, y)$ defines a proper inner product on  $\mathbb{R}^n$ . The associated norm, denoted by  $\|\cdot\|_A$ , is called the energy norm, or simply the A-norm:

$$\|x\|_A = (Ax, x)^{1/2} = \sqrt{x^T A x}$$

Related measure in Machine Learning, Vision, Statistics: the Mahalanobis distance between two vectors:

$$d_A(x,y) = \|x-y\|_A = \sqrt{(x-y)^T A(x-y)}$$

Appropriate distance (measured in # standard deviations) if x is a sample generated by a Gaussian distribution with covariance matrix A and center y.

### More terminology

A matrix is Positive Semi-Definite if:

6-5

 $(Au,u)\geq 0$  for all  $u\in \mathbb{R}^n$ 

Eigenvalues of symmetric positive semi-definite matrices are real nonnegative, i.e., ...

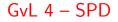
> ... A can be singular [If not, A is SPD]

> A matrix is said to be Negative Definite if -A is positive definite. Similar definition for Negative Semi-Definite

► A matrix that is neither positive semi-definite nor negative semidefinite is indefinite

And  $(Ax, x) = 0 \; orall x$  then A = 0

Show:  $A \neq 0$  is indefinite iff  $\exists x, y : (Ax, x)(Ay, y) < 0$ 



### The $LDL^{T}$ and Cholesky factorizations

**\swarrow\_{6}** The (standard) LU factorization of an SPD matrix A exists

 $\blacktriangleright$  Let A = LU and D = diag(U) and set  $M \equiv (D^{-1}U)^T$ .

Then 
$$A = LU = LD(D^{-1}U) = LDM^T$$

Both L and M are unit lower triangular

► Consider  $L^{-1}AL^{-T} = DM^TL^{-T}$ 

6-6

> Matrix on the right is upper triangular. But it is also symmetric. Therefore  $M^T L^{-T} = I$  and so M = L > Alternative proof: exploit uniqueness of LU factorization without pivoting + symmetry:  $A = LDM^T = MDL^T \rightarrow M = L$ 

The diagonal entries of D are positive [Proof: consider  $L^{-1}AL^{-T} = D$ ]. In the end:

$$A = LDL^T = GG^T$$
 where  $G = LD^{1/2}$ 

Cholesky factorization is a specialization of the LU factorization for the SPD case. Several variants exist.

6-7

*First algorithm:* row-oriented LDLT

Adapted from Gaussian Elimination. Main observation: The working matrix A(k+1:n,k+1:n) in standard LU remains symmetric.  $\rightarrow$  Work only on its upper triangular part & ignore lower part

1. For 
$$k = 1 : n - 1$$
 Do:  
2. For  $i = k + 1 : n$  Do:  
3.  $piv := a(k,i)/a(k,k)$   
4.  $a(i,i:n) := a(i,i:n) - piv * a(k,i:n)$   
5. End  
6. End

This will give the U matrix of the LU factorization. Therefore D = diag(U),  $L^T = D^{-1}U$ .



Row-Cholesky (outer product form)

6-9

Scale the rows as the algorithm proceeds. Line 4 becomes

$$a(i,:):=a(i,:)\!-\![a(k,i)/\sqrt{a(k,k)}]*\left[a(k,:)/\sqrt{a(k,k)}
ight]$$

ALGORITHM : 1. Outer product Cholesky

1. For 
$$k = 1 : n$$
 Do:  
2.  $A(k, k : n) = A(k, k : n) / \sqrt{A(k, k)}$ ;  
3. For  $i := k + 1 : n$  Do :  
4.  $A(i, i : n) = A(i, i : n) - A(k, i) * A(k, i : n)$ ;  
5. End  
6. End

#### > Result: Upper triangular matrix U such $A = U^T U$ .

## **Example:**

$$A=egin{pmatrix} 1 & -1 & 2\ -1 & 5 & 0\ 2 & 0 & 9 \end{pmatrix}$$

 $\swarrow_7$  Is A symmetric positive definite?

- Multiple What is the  $LDL^T$  factorization of A?
- Mhat is the Cholesky factorization of A ?

GvL 4 – SPD

**Column Cholesky.** Let  $A = GG^T$  with G = lower triangular. Then equate j-th columns:

$$a(:,j) = \sum_{k=1}^{j} g(:,k) g^{T}(k,j) 
ightarrow$$

$$egin{aligned} A(:,j) &= \sum\limits_{k=1}^{j} G(j,k) G(:,k) \ &= G(j,j) G(:,j) + \sum\limits_{k=1}^{j-1} G(j,k) G(:,k) 
ightarrow \ G(j,j) G(:,j) &= A(:,j) - \sum\limits_{k=1}^{j-1} G(j,k) G(:,k) \end{aligned}$$

GvL 4 – SPD

6-11

> Assume that first j-1 columns of G already known.

Compute unscaled column-vector:

$$v = A(:,j) - \sum_{k=1}^{j-1} G(j,k) G(:,k)$$

> Notice that  $v(j) \equiv G(j,j)^2$ .

6-12

 $\blacktriangleright$  Compute  $\sqrt{v(j)}$  and scale v to get j-th column of G.

## ALGORITHM : 2 Column Cholesky

1. For 
$$j = 1 : n \ do$$
  
2. For  $k = 1 : j - 1 \ do$   
3.  $A(j:n,j) = A(j:n,j) - A(j,k) * A(j:n,k)$   
4. EndDo  
5. If  $A(j,j) \le 0$  ExitError("Matrix not SPD")  
6.  $A(j,j) = \sqrt{A(j,j)}$   
7.  $A(j+1:n,j) = A(j+1:n,j)/A(j,j)$   
8. EndDo

**Try algorithm on**:

$$A=egin{pmatrix} 1 & -1 & 2 \ -1 & 5 & 0 \ 2 & 0 & 9 \end{pmatrix}$$

6-13

GvL 4 – SPD