THE URV & SINGULAR VALUE DECOMPOSITIONS

e Orthogonal subspaces;

e Orthogonal projectors; Orthogonal decomposition;
e The URV decomposition

e Introduction to the Singular Value Decomposition

e The SVD - existence and properties.
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Orthogonal projectors and subspaces

Notation: Given a supspace X of R™ define

J‘I{ylyj_a}, Ve € X}

» Llet Q = [q1,-+* ,qy] an orthonormal basis of X

#11| How would you obtain such a basis?

» Then define orthogonal projector P = QQ7T

Properties |

(a) P (b) I —P)2=I—-P
(c) Ran(P) (d) Null(P) =
(e) Ran(I — P) Null(P) =

» Note that (b) means that I — P is also a projector
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Proof. (a), (b) are trivial

(c): Clearly Ran(P) = {z| z = QQTy,y € R"} C X.
Any x € X is of the form x = Qy,y € R". Take Px =
QAT (Qy) = Qy = x. Sincex = Px, * € Ran(P). So

X C Ran(P). In the end X = Ran(P).

(d): = € e (x,y) = 0,Vy € X « (z,Qz) =
0,Vz € R" + (QTz,2) = 0,Vz € R" +& QTz = 0 «—

QQTr =0« Px =0.

(e): Need to show inclusion both ways.

e x € Null(P) < Pr =0+ ([I—-—Plx=2x —

x € Ran(I — P)
e x € Ran(I — P) + dJy € R™|x
Pxr =PI —-P)y=0—x € Null(P)

(I — P)y —
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Result: |Any x € R™ can be written in a unique way as

T=x1+ T2, T € X, x3 € X
» Proof: Just set ¢y = Px, x2 = (I — P)x

» Note: XNX+t= 10}

»  Therefore: R™"= X @ X+

» C(Called the Orthogonal Decomposition
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Orthogonal decomposition

» In other words R™ = PR™ & (I — P)R™ or:

R™ = Ran(P) & Ran(I — P) or:

R™ = Ran(P) @& Null(P) or:

R™ = Ran(P) @ Ran(P)+
» Can complete basis {q1,* + + , @} into orthonormal basis of R™,
dr+1s°°° »dm

» {qri1s s Qmt=hasisof X+. —  dim(X*) =m — r.
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Four fundamental supspaces - URV decomposition

Let A € R™*™ and consider Ran(A)+
Property 1: Ran(A)+ = Null(AT)

Proof: © € Ran(A)1iff (Ay,x) = Oforall yiff (y, ATz) = 0

for all y ...

Property 2: Ran(AT) = Null(A)+

» Take X = Ran(A) in orthogonal decomoposition. » Result:

R™ = Ran(A) @ Null(A")
R" = Ran(A') @ Null(A)
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» Express the above with bases for R™ :

[yfla U2y g Upy Upf1yg Up 42y ’UH@]
Ran(A) Nuﬁ?AT)

and for R" [@19 U2y 3 UpyUp 41y Upy2y° 7”@]
Ran(AT) Nu??(A)

»  Observe u;jFAfvj = 0 forz > r or 3 > r. Therefore

CO0

r _ _
U AV—R—(O 0

) Ce R —
mXxn

A=URV?
»  General class of URV decompositions
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»  Far from unique.

#m| Show how you can get a decomposition in which C' is lower (or
upper) triangular, from the above factorization.

» (Can select decomposition so that R is upper triangular — URV
decomposition.

»  (Can select decomposition so that R is lower triangular — ULV
decomposition.

» SVD = special case of URV where R = diagonal

#n3] How can you get the ULV decomposition by using only the
Householder QR factorization (possibly with pivoting)? [Hint: you
must use Householder twice]
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The Singular Value Decomposition (SVD)

Theorem I For any matrix A € R™*" there exist unitary matrices
U € R™™and V&€ R™ "™ such that

A=UxvT

where X is a diagonal matrix with entries o;; > 0.
011 2> 023 2> +++ Opp > 0 with p = min(n, m)

» The oy;'s are the singular values. Notation change o;; — o

Proof: I Let o1 = ||Al|l2 = max, |z|,=1 ||Ax||2. There exists

a pair of unit vectors v1, 1 such that

A’Ul = Oo1U1q
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»  Complete v; into an orthonormal basis of R™

V = [vy, Vo] = n X n unitary

»  Complete u; into an orthonormal basis of R™

#y

U = [uy, Us] = m X m unitary

Define U, V' as single Householder reflectors.

»  Then, it is easy to show that

T T

AV:Ux("“") — UTAV:<"“”>EA1
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» (QObserve that
o
|4 (O] 2 o2 + Il = /o2 + w3
w/ 2

»  This shows that w must be zero [why?]

().

»  Complete the proof by an induction argument. [l
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Case 1: |

Case 2: I
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The “thin” SVD

»  (Consider the Case-1. It can be rewritten as
A = [UiU,) (%) v’
Which gives:
A=U2, VT

where U7y is m X n (same shape as A), and 31 and V are n X n

» Referred to as the “thin” SVD. Important in practice.

#15| How can you obtain the thin SVD from the QR factorization of
A and the SVD of an n X n matrix?
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A few properties. | Assume that

0,>2022>++->20,>0ando,y1=+--=0,=0

Then:

e rank(A) = r = number of nonzero singular values.
e Ran(A) = span{u, uz,...,u,}

o Null(A?) = span{t, 1, Uri2q...,Un}

e Ran(A?) = span{v,vs,...,v,}

e Null(A) = span{v,11,Vr12,...,U,}
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Properties of the SVD (continued)

® The matrix A admits the SVD expansion:

r
A = E O'z-ui'v;.r
1=1

e ||A||2 = o1 = largest singular value

° ||AllFr = (Zzzl 03)1/2

e When A is an n X m nonsingular matrix then ||A™Y||s = 1/0,
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Theorem | Let K < r and

k
Ay = Z o]
=i
then

in ||A— B|z=|A— A2 =
ranrlgl(g;:k ” ”2 ” k”2 OL+1
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Proof: First: ||A — B||2 > o1, for any rank-k matrix B.
Consider X = span{vy,va,-++ ,Vr11}. Note:
dim(Null(B)) =n — k — Null(B) N X # {0}
[Why?]
Let xg € Null(B) N X, xg # 0. Write 9 = Vy. Then
(A — B)xzo||z = || Azl = [USV Vyll2 = || 2yl
But || Xyl||le > orri||xo||2 (Show this). — ||A — B||2 > ok11

Second: take B = Aj. Achieves the min.
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Right and Left Singular vectors: \

A’Ui
ATuj

oiu;

Y

» Consequence AT Av; = O'Z.sz- and AATw,; = O'Z.Qu,,;

» Right singular vectors (v;'s) are eigenvectors of AT A

» Left singular vectors (u;'s) are eigenvectors of AAT

» Possible to get the SVD from eigenvectors of AAT and AT A
— but: difficulties due to non-uniqueness of the SVD
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Define the r X r matrix

21 = diag(al, c ooy O'r,a)
» Let A € R™*™ and consider ATA (€ R™"*™):

2
ATA=Vv3'zvt —» ATA=V (2(3)1 8) vt
N——

nxn

» This gives the spectral decomposition of AT A.
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»  Similarly, U gives the eigenvectors of AAT.

Important: |

ATA = VD,VT and AAT = UD,U" give the SVD factors
U,V up to signs!
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