Householder

```
    [Note: | . | = | . |2 ]
P = I - 2 w w' w with || w | = 1
or
P}=\textrm{I}-\betav\mp@subsup{v}{}{\top}\mathrm{ with }\beta=2/\mp@subsup{v}{}{\top}
=====================================================
```

Question 1: given x find v s.t. $P x=\alpha e_{1}$
$\left(I-\beta \vee v^{\top}\right) x=\alpha e_{1}$
Answer: $\quad v=x-\alpha e_{1}$ with $\alpha= \pm\|x\| \quad$ [both signs work]
---> two different implementations
==1

NEXT: generalization
Question 2: Given

$$
x=\left|\begin{array}{llll}
\left|X_{1}\right| \\
\left|X_{2}\right|
\end{array}\right| \quad X_{1} \in R^{k} \quad X_{2} \in \mathbb{R}^{m-k}
$$

find v such that $P v=\left|x_{1}\right| \quad$ with $y=\alpha e_{1} \in \mathbb{R}^{m-k}$
solution: select v as follows:

$$
\begin{aligned}
& v=\begin{array}{l}
\left|v_{1}\right| \\
\left|v_{2}\right|
\end{array} \quad \text { set } v_{1}=0=\begin{array}{c}
=> \\
\left|v_{2}\right|
\end{array} \\
& P x=? \\
& x-\begin{array}{l}
\beta\left(v^{\top} x\right) \\
\\
\\
\\
\\
\\
\text { scalar } s
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& ================================== \\
& y \\
& =x_{2}-s v_{2} s=\beta v_{2}^{\top} x_{2} \\
& \\
& ==>\text { everything as if we work only on second part }\left(x_{2}\right)
\end{aligned}
$$

$$
\text { Obtain } v_{2} \text { as a Householder vector to transform } x_{2} \text { into } \alpha e_{1}
$$

==

```
X1 = P1 X
X2 = P2 X X = P1 P1 X
X3 = P3 X2 = ....
X X 
```

```
                        =============== Apply inverse of Pn Pn-1 .... P1
        on left:
```



```
[P(P-1 = P Pi
X = Q R
X is m x n
Differences with Gram-Schmidt:
    * here Q is of size : m x m
    * R is of size : m x n - R is upper triangular.
```

==1

How to solve LS problems?
Important : you never form Q explicitly! [m x m matrix - expensive]

A
Want to min || $Q R x-b| |==\min | | Q^{\top}(Q R x-b)| |=\min | | R x-Q^{\top} b| |$
$R=\left|\begin{array}{r}R_{1} \\ 0\end{array}\right| \quad Q^{\top} \quad b=c=\left|\begin{array}{l}C_{1} \\ \mathrm{C}_{2}\end{array}\right|$

solve $R_{1} X=C_{1}==>$ Done

