Householder $[Note: || . || = || . ||_2]$ $P = I - 2 w w^{T}$ with || w || = 1or $P = I - \beta v v^T$ with $\beta = 2 / v^T v$ _____ Question 1: given x find v s.t. $Px = \alpha e_1$ $(I-\beta \vee \vee^T)X = \alpha e_1$ Answer: $v = x - \alpha e_1$ with $\alpha = \pm || x ||$ [both signs work] ---> two different implementations NEXT: generalization Question 2: Given $\mathbf{X} = |\mathbf{X}_1| \quad \mathbf{X}_1 \in \mathbf{R}^k \quad \mathbf{X}_2 \in \mathbb{R}^{m-k}$ X 2 find v such that $P v = |x_1|$ with $y = \alpha e_1 \in \mathbb{R}^{m-k}$ IY I solution: select v as follows: $v = |v_1|$ set $v_1 = 0 \Rightarrow v = |0|$ V 2 | V 2 | Px =? $x - \beta (v^{T} x) v = |x_{1}|$ ======= | y | scalar s _____ $y = x_2 - S^* V_2$ $S = \beta V_2^T X_2$ ==> everything as if we work only on second part (x_2) Obtain v_2 as a Householder vector to transform x_2 into αe_1 $X_1 = P_1 X$ $X_2 = P_2 X_1 = P_1 P_1 X$ $X_3 = P_3 X_2 = \ldots$ $X_n = P_n X_{n-1} = P_n P_{n-1} \dots P_1 X = upper triangular = R$

============ Apply inverse of Pn Pn-1 P1 on left: $[P_n P_{n-1} \dots P_1]^{-1} = P_1^{-1} \times P_2^{-1} \dots P_n^{-1} = P_1 P_2 \dots P_n \equiv Q$ $[P_{i^{-1}} = P_{i}]$ ==> X = Q RXismxn Differences with Gram-Schmidt: * here Q is of size : m x m R is of size : m x n - R is upper triangular. _____ How to solve LS problems? Important : you never form Q explicitly! [m x m matrix - expensive] А Want to min $|| Q R x - b || = min || Q^{T} (Q R x - b) || = min || R x - Q^{T} b ||$ R = | R1 | 0 Ï solve $R_1 \times = c_1 = Done$