

```
X is m x n
X1 = P1 X
X2 = P P X X = P1 P P X
X3}=\mp@subsup{P}{3}{}\mp@subsup{X}{2}{}=\ldots
\vdots
Xn}=\mp@subsup{P}{n}{}\mp@subsup{X}{n-1}{\prime}=\mp@subsup{P}{n}{}\mp@subsup{P}{n-1}{\prime}\ldots... P1 X = upper triangular \equiv R
R of the form [when m=7, n = 5]
    x x x x x
    0 x x x x
    0 0 x x x
    0 0 0 x x
    0 0 0 0 x
    0 0 0 0 0
    0 0 0 0 0
R = Pn Pn-1 ... P Pr X
Pi}\mp@subsup{i}{}{-1}=\mp@subsup{P}{i}{}\quad==
```



```
==>
X = Q R with Q = P1 P P % ... Pn
X is m x n
Differences with Gram-Schmidt:
    * here Q is of size : m x m
    * R is of size : m x n - R is upper triangular.
=====================================================
```

How to solve LS problems?
Important : You never form Q explicitly! [m x m matrix - expensive]
A
Want to min $\|=\mathbb{A} R \times-\mathrm{b}\|==\min \left\|\mathrm{Q}^{\top}(\mathrm{Q} R \mathrm{R}-\mathrm{b})\right\|=\min \left\|\mathrm{R} x-\mathrm{Q}^{\top} \mathrm{b}\right\|$
$R=\left|\begin{array}{r}R_{1} \\ 0\end{array}\right| \quad Q^{\top} \quad b=c=\left|\begin{array}{ll}C_{1} \\ C_{2}\end{array}\right|$


```
z= | | Z | | | | | | | | | | 2 = ||\mp@subsup{Z}{1}{}|\mp@subsup{|}{}{2}+||\mp@subsup{Z}{2}{}|\mp@subsup{|}{}{2}
Solve R1 X = Ci ==> Done
?? How to compute c = Q }\mp@subsup{}{}{\top}\mathrm{ b?
Q ' = Pn P P N-1 .... P Pr
need tp compute Q Q b - done by hoApp(..., b)
====================================================
Cost of householder:
working on a matrix of size:
    (m-k+1) x (n-k+1)
    matvec: 2 (m-k+1) (n-k+1)
    update: 2 (m-k+1) (n-k+1)
    each step 4 (m-k+1) (n-k+1)
    sum from k=1 to n -->
    ===========
    2mn'2 - < / n n
    ===========
    when m=n ==> 4/3 n 3
    A =
        x x x
        0 x x G(1,2)
        0 0 x G(1,3) G(2,3)
        0 0 G G(1,4) G(2,4) G(3,4)
======================================================
```

Proofs of properties in page 9-2
$\operatorname{Ran}(P)=X$?

1) $\operatorname{Ran}(P) \subseteq X$??
$\operatorname{Ran}(P)=\{z \mid z=P$ y for some $y\}$
$=\left\{z \mid z=Q\left(Q^{\top} y\right)\right.$ for some $\left.y\right\} \subseteq X$
2) $X \subseteq \operatorname{Ran}(P)$
$x \in X==>x=Q$ y for $y \in \mathbb{R} r$
Compute Px: $\quad P x=Q Q^{\top}(Q y)=Q y=x==>x=P x==>$
$x \in \operatorname{Ran}(P) \quad$ - done -
