Background on orth. decomposition and URV
1)

X a subspace of \mathbb{R} m then [orthogonal decomposition]:
$\mathbb{R}^{m}=X \oplus X \perp$
2) $A \in \mathbb{R}^{m} \times n \quad m$ rows n columns [often $m>n-b u t$ in this case $m<n$]
e.g. $m=3, n=5$:
$A=\begin{array}{lllll}x & x & x & x & x \\ x & x & x & x & x \\ x & x & x & x & x\end{array}$
Let $X=\operatorname{Ran}(A) \quad$ Then: $\mathbb{R} m=X \oplus X \perp=\operatorname{Ran}(A) \oplus \operatorname{Ran}(A) \perp$
Observe that: $\operatorname{Ran}(A) \perp=\operatorname{Null}\left(A^{\top}\right)$

SO:
$\mathbb{R}^{m}=X \quad \oplus \quad X \perp \quad X$ is a subspace of \mathbb{R}^{m}
$\mathbb{R}^{m}=\operatorname{Ran}(A) \oplus \operatorname{Null}\left(A^{\top}\right)$

Do the same thing for A^{\top} :
$\mathbb{R}^{n}=\operatorname{Ran}\left(A^{\top}\right) \oplus \operatorname{Null}(A)$
3) Express A in bases for $\mathbb{R} m$ and $\mathbb{R} n \ldots==>$ URV

Pr. Ex. \# 08 :
Q: What are all solutions of system

$$
A x=b
$$

when $m<n$.. [assume A has rank m]
Find the solution X s of smallest length.

```
\(x \in \mathbb{R}^{n} \quad=x_{1}+x_{2}\)
where \(\quad x_{1} \in \operatorname{Ran}\left(A^{\top}\right)\) and \(x_{2} \in \operatorname{Null}(A)\)
    \(b \in \mathbb{R}^{m} \quad=b_{1}+b_{2}\)
    \(A^{\top}\) is \(n \times m \quad n>m\) has rank \(n\) [full column rank]
    \(\mathbb{R}^{m}=\operatorname{Ran}(A) \oplus \operatorname{Null}\left(A^{\top}\right)\)
                \(\longrightarrow=\{0\}\)
```

```
how to get }\mp@subsup{x}{1}{}?\quad\mp@subsup{x}{1}{}\in\operatorname{Ran}(\mp@subsup{A}{}{\top})\quad==> \mp@subsup{x}{1}{}\mathrm{ in the span of columns of }\mp@subsup{A}{}{\top
```

we can write: $x_{1}=A^{\top} y \quad$ where $y \in \mathbb{R}{ }^{m}$
$\mathrm{A} x=\mathrm{b}==>$
$A\left[x_{1}+x_{2}\right]=b \quad=\Rightarrow \quad A x_{1}=b==>A A^{\top} y=b \quad==>\operatorname{solve}\left(A A^{\top}\right) y=b$
$X_{1} \in \operatorname{Ran}\left(A^{\top}\right)$ and $X_{2} \in \operatorname{Null}(A)$
[recall that when A is $m x n m>n$ of full rank then $A^{\top} A$ is invertible]
what are all solutions?
$x=x_{1}+x_{2}$ where $x_{1}=A^{\top} y[y$ unique $]$ and x_{2} *any* vector of null(A)
what is dimension of null(A)?

$$
\mathrm{n}-\mathrm{m}
$$

$q:$ which of these solutions has the smallest norm？
$x=x_{1}+x_{2}$
$\|x\|^{2}=\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}$
norm is min when $x_{2}=0$
$\mathrm{X}_{\mathrm{s}}=\mathrm{X}_{1}$ is solution with smallest norm．

```
ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ
How to compute Xs ?
solution 1 : use the above.
    solve (A A
    then }\mp@subsup{X}{s}{}=\mp@subsup{A}{}{\top}
Solution 2 ：
```

```
A}\mp@subsup{}{}{\top}=Q Q [e.g. Gram-Schmidt]
```

A}\mp@subsup{}{}{\top}=Q Q [e.g. Gram-Schmidt]
Then write solution as }\mp@subsup{\textrm{x}}{1}{}=\textrm{Q}
X1 = Q y
A (Q y) = b ==> (R' Q ') Q y =b ==> R ' y = b ==>
solve for y....

```

Proof of SVD decomposition
all norms｜｜｜｜are 2－norms ．．
\(A \in \mathbb{R}^{m} \times n\)

1）
Let \(\sigma_{1}=\|A\|=\max\) of \(\|A x\|\) for all vectors \(x\|x\|=1\)
\(\sigma_{1}=\left\|A v_{1}\right\|\) with \(\left\|v_{1}\right\|=1\)
```

Let ul= A vi/ \sigma1 Note : || ul || = 1

```
2) Complete \(u_{1}\) into a basis of \(\mathbb{R}^{m}\) :
\[
\mathrm{U}=\left[\mathrm{u}_{1}, \mathrm{u}_{2} \ldots . \mathrm{u}_{\mathrm{m}}\right] \text { unitary }
\]
\[
\text { Complete } u_{1} \text { into a basis of } \mathbb{R} n
\]
\[
\mathrm{V}=\left[\begin{array}{llll}
\mathrm{v}_{1}, & \mathrm{v}_{2} & \ldots & \left.\mathrm{v}_{n}\right]
\end{array}\right.
\]
3)

Consider \(U^{\top} A V=\left|\begin{array}{ll}\sigma_{1} & W^{\top} \\ \mid 0 & \mathrm{~B}\end{array}\right|\) call this matrix \(\mathrm{A}_{1}\)
4) Claim w must be equal to zero.
\[
\begin{aligned}
& \text { Let } x=\left|\begin{array}{c}
\sigma_{1} \\
W
\end{array}\right| \\
& \text { compute } A_{1} x=\left|\begin{array}{c}
\sigma_{1}^{2}+W^{\top} W \\
B W
\end{array}\right|
\end{aligned}
\]

Contradiction argument: assume \(w \neq 0\) then
\(||x|| \geq\left|x_{1}\right|==>\)
\(\left\|A_{1} x\right\| \geq\left[\sigma_{1}{ }^{2}+W^{\top} W\right]=\sqrt{ }\left[\sigma_{1}{ }^{2}+W^{\top} W\right]\|x\|>\sigma_{1}\|x\|\)
[recall: \(\|\times\|=V\left[\sigma_{1}{ }^{2}+W^{\top} w\right]\)
why is (*) a contradiction?
answer : || \(A_{1}| |=\|A\|=\sigma_{1}\)
5) \(\left.\begin{aligned} \text { Consider } U^{\top} A V & =\left|\begin{array}{ll}\sigma_{1} & 0 \\ 0 & B\end{array}\right|\end{aligned} \right\rvert\,\)

Induction argument: \(\mathrm{B}=\mathrm{U}_{1} \Sigma_{1} \mathrm{~V}_{1}{ }^{\top}\)
\[
\begin{aligned}
& \begin{array}{lll}
\text { then } & \mathrm{A}
\end{array}=\mathrm{U} \quad\left|\begin{array}{lll}
\mid \sigma_{1} & & 0 \\
\mid 0 & \mathrm{U}_{1} \Sigma_{1} & \mathrm{~V}_{1}{ }^{\top}
\end{array}\right| \begin{array}{l}
\mid
\end{array} \\
& \mathrm{U} \sim=\left|\begin{array}{ll}
1 & 0 \\
\mid & 0 \\
\mathrm{U}_{1}
\end{array}\right| \\
& A=U \quad U \sim \Sigma(V V \sim)^{\top}
\end{aligned}
\]```

