Example

Singular values?

compute:
$$A A^T =$$

$$| 5 - 4 |$$
 $A A^{T} = | -4 5 |$

$$det(A A^{T} - \lambda I) = (5-\lambda)^{2} -16 ==> \lambda = 5 \pm 4$$

$$\sigma_1 = 3$$
 $\sigma_2 = 1$

$$\lambda = 9 = >$$
 | -4 -4 | $AA^{T} - \lambda I = | -4 -4 |$

$$U = [u_1 \ u_2] = | 1 1 | |-1 1 | / \sqrt{[2]}$$

$$A = U \Sigma_1 V_1^T ==>$$

$$V_1^T = \Sigma_1^{-1} U^T A$$

Practice ex. 09

(a)

min
$$\| A - B \| = \sigma_{k+1}$$

{B | rank(B) = k}

Qu:
$$rank(B) \le k \rightarrow \| A - B \| \ge \sigma_{k+1}$$

let l=rank(B)
$$\leq$$
 k \rightarrow | A - B | \geq σ_{l+1} \geq σ_{k+1}

recall : $\sigma_1 \geq \ldots \sigma_k \geq \ldots$

(b) from (a) min
$$[\ldots] \ge \sigma_{k+1}$$
 - but

$$\parallel$$
 A - A_k \parallel = σ_{k+1} .. ==> min is equal [achieved by A_k]

(d) when k=r

$$\parallel$$
 A - B \parallel < σ_r \rightarrow rank(B) \geq r=rank(A)

[a consequence: if A is full rank and B is close enough then B is of full rank] $\,$

(e) Q: let ϵ be given . and let k == the number of singular values that are > ϵ

if
$$|| A - B || \le \varepsilon$$
 then rank(B) $\ge k$

we are in situation (c) ==> $rank(B) \ge k$

Consider all matrices B such that $\|A - B\| \le \epsilon$

their ranks must be $\geq k$

the min of all these ranks is k.. it is achieved by A_k == this is the definition or numerical rank or ϵ -rank of A
