$\|A u\|=\|\lambda u\|=|\lambda|\|u\|$ ||A u ||/ \|u \| = | $\lambda \mid \leq \max \|A x\| /\|x\|=\|A\|$
===1

Gerschgorin's theorem

```
Disk D(c, r) = disk centered at c with radius r
    = {z E C | |z-c| s r }
```

theorem says that any λ belongs to one of the n disks
$D\left(a_{i i}, \rho_{i}\right)-$ where $\rho_{i}=\sum_{j \neq}\left|a_{i}\right|$
$\lambda \quad \in \quad U \quad D\left(a_{i i}, \rho_{i}\right)$
Proof of Gerschgorin's theorem
negation of theorem is
$\exists \quad \lambda$ s.t. for all i $\quad\left[\begin{array}{ll}\|-a_{i i} \mid>\rho_{i} & (* *) \\ {[-\lambda I \text { is invertible }]}\end{array}\right.$

D- $\boldsymbol{\lambda}$ I is invertible .. therefore

```
A - \lambda I = D-\lambda I -(D-A) = (D-\lambda I) [ I - (D-\lambda I)-1}(D-A)
    =(D-\lambda I) [ I - (D-\lambda I) -1F]

Diagonal entries of \(F\) : they are all zeros.
Off-diago. entries in row i \(:-a_{i j}\)
1 -norm of row \(i=\quad \rho_{i}=\sum_{j \neq i}\left|a_{i j}\right|\)
Entries of row i of \((\mathrm{D}-\lambda \mathrm{I})^{-1} \mathrm{~F}\) :
diag entry is 0
off-diag. -aij /

Row \(i\) of \((D-\lambda I)^{-1} F=1 /\left(a_{i i}-\lambda\right) \times\) row \(_{i}\) of \(F\)
\(\|\) Row \(i \|_{1}=\rho_{i} /\left|a_{i i}-\lambda\right|<1\) because of (**)
\(\left\|(\mathrm{D}-\lambda \mathrm{I})^{-1} \mathrm{~F}\right\| \infty<1\)
Then (\&\&) implies that \(A-\lambda I\) is invertible (of the form
( \(D-\lambda I)^{-1}(I-E)\) where \(\left.||E||<1\right)\)
CONTRADICTION. \(\square\)```

