
Local Search (Ch. 4-4.1)

Local search

We will discuss four optimization algorithms:

1. Hill climbing
2. Simulated annealing
3. Beam search
4. Genetic algorithms

All of these will only consider neighbors
while looking for a goal

Local beam search

Beam search is similar to hill climbing, except
we track multiple states simultaneously

Initialize: start with K random nodes
1. Find all children of the K nodes
2. Add children and K nodes to pool, pick best
3. Repeat...

Unlike previous approaches, this uses more
memory to better search “hopeful” options

Local beam search

Beam search with
3 beams

Pick best 3 options
at each stage to
expand

Stop like hill-climb
(next pick is same
or worse as last pick)

Local beam search

However, the basic version of beam search
can get stuck in local maximum as well

To help avoid this, stochastic beam search
picks children with probability relative to
their values

This is different that hill climbing with K
restarts as better options get more
consideration than worse ones

Local beam search

Local beam search

You try it!

Run local-
beam search
with k=4
on this tree

Genetic algorithms

Genetic algorithms are based on how life has
evolved over time

They (in general) have 3 (or 5) parts:
1. Select/generate children

1a. Select 2 random parents
1b. Mutate/crossover

2. Test fitness of children to see if they survive
3. Repeat until convergence

Genetic algorithms

Nice examples of GAs:
http://rednuht.org/genetic_cars_2/
http://boxcar2d.com/

Genetic algorithms

Selection/survival:
Typically children have a probabilistic survival
rate (randomness ensures genetic diversity)

Crossover:
Split the parent's information into two parts,
then take part 1 from parent A and 2 from B

Mutation:
Change a random part to a random value

http://rednuht.org/genetic_cars_2/
http://boxcar2d.com/

Genetic algorithms

Genetic algorithms are very good at optimizing
the fitness evaluation function (assuming
fitness fairly continuous)

While you have to choose parameters
(i.e. mutation frequency, how often to take
a gene, etc.), GAs tend to head to optimal

The downside is that often it takes many
generations to converge to the optimal

Genetic algorithms

There are a wide range of options for selecting
who to bring to the next generation:
- always the top (similar to hill-climbing...

gets stuck a lot)
- choose purely by weighted random (i.e.

4 fitness chosen twice as much as 2 fitness)
- choose the best and others weighted random

Can get stuck if pool's diversity becomes too
little (hope for many random mutations)

Genetic algorithms

Let's make a small (fake) example with the
4-queens problem

Q

Q
Q

Q

QQ

Q
Q

Q

Q

Q
Q

Adults:
right
1/4

left
3/4

Q

Q
Q Q

mutation

(2nd col)

Q

Q

Q
Q

Child pool (fitness):

Q

QQ
Q

Q
QQ

Q

Q

Q
Q Q

Q

Q
Q

Q

(20)

(10)

(15)

=(30)

=(20)

=(30)

Genetic algorithms

Let's make a small (fake) example with the
4-queens problem

Q

Q
Q Q

Q

Q

Q
Q

Child pool (fitness):

Q

QQ
Q

Q
QQ

Q

Q

Q
Q Q

Q

Q
Q

Q

(20)

(10)

(15)

=(30)

=(20)

=(30)

Weighted random
selection:

Q
QQ

Q

Q

Q
Q Q

Q

Q

Q
Q

Genetic algorithms

https://www.youtube.com/watch?v=R9OHn5ZF4Uo

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

