
Discrete Fourier Transform
Fast Fourier Transform

Applications

Scientific Computing: An Introductory Survey
Chapter 12 – Fast Fourier Transform

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

Copyright c© 2002. Reproduction permitted
for noncommercial, educational use only.

Michael T. Heath Scientific Computing 1 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Outline

1 Discrete Fourier Transform

2 Fast Fourier Transform

3 Applications

Michael T. Heath Scientific Computing 2 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Trigonometric Interpolation

In modeling periodic or cyclic phenomena, sines and
cosines are more appropriate functions than polynomials
or piecewise polynomials

Representation as linear combination of sines and cosines
decomposes continuous function or discrete data into
components of various frequencies

Representation in frequency space may enable more
efficient manipulations than in original time or space
domain

Michael T. Heath Scientific Computing 3 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Complex Exponential Notation
We will use complex exponential notation based on Euler’s
identity

eiθ = cos θ + i sin θ

where i =
√
−1

Since e−iθ = cos(−θ) + i sin(−θ) = cos θ − i sin θ, we have

cos(2πkt) =
e2πikt + e−2πikt

2

and

sin(2πkt) = i
e−2πikt − e2πikt

2
Pure cosine or sine wave of frequency k is equivalent to
sum or difference of complex exponentials of half
amplitude and frequencies k and −k

Michael T. Heath Scientific Computing 4 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Roots of Unity
For given integer n, primitive nth root of unity is given by

ωn = cos(2π/n)− i sin(2π/n) = e−2πi/n

nth roots of unity, called twiddle factors in this context, are
given by ωk

n or by ω−k
n , k = 0, . . . , n− 1

< interactive example >
Michael T. Heath Scientific Computing 5 / 32

http://www.cse.uiuc.edu/iem/fft/twdlfctr/


Discrete Fourier Transform
Fast Fourier Transform

Applications

Discrete Fourier Transform

Discrete Fourier transform, or DFT, of sequence
x = [x0, . . . , xn−1]T is sequence y = [y0, . . . , yn−1]T given
by

ym =
n−1∑
k=0

xk ωmk
n , m = 0, 1, . . . , n− 1

In matrix notation, y = Fn x, where entries of Fourier
matrix Fn are given by

{Fn}mk = ωmk
n

For example,

F4 =


1 1 1 1
1 ω1 ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


Michael T. Heath Scientific Computing 6 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Inverse DFT

Note that

1
n


1 1 1 1
1 ω−1 ω−2 ω−3

1 ω−2 ω−4 ω−6

1 ω−3 ω−6 ω−9




1 1 1 1
1 ω1 ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


In general,

F−1
n = (1/n)F H

n

Inverse DFT is therefore given by

xk =
1
n

n−1∑
m=0

ym ω−mk
n k = 0, 1, . . . , n− 1

DFT gives trigonometric interpolant using only
matrix-vector multiplication, which costs only O(n2)

Michael T. Heath Scientific Computing 7 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

DFT, continued

DFT of sequence, even purely real sequence, is in general
complex

Components of DFT y of real sequence x of length n are
conjugate symmetric : yk and yn−k are complex conjugates
for k = 1, . . . , (n/2)− 1
Two components of special interest are

y0, whose value is sum of components of x, is sometimes
called DC component, corresponding to zero frequency
(i.e., constant function)
yn/2, corresponding to Nyquist frequency, which is highest
frequency representable at given sampling rate

Components of y beyond Nyquist frequency correspond to
frequencies that are negatives of those below Nyquist
frequency

Michael T. Heath Scientific Computing 8 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Example: DFT

For randomly chosen sequence x,

F8 x = F8



4
0
3
6
2
9
6
5


=



35
−5.07 + 8.66i
−3 + 2i

9.07 + 2.66i
−5

9.07− 2.66i
−3− 2i

−5.07− 8.66i


= y

Transformed sequence is complex, but y0 and y4 are real,
while y5, y6, and y7 are complex conjugates of y3, y2, and
y1, respectively

There appears to be no discernible pattern to frequencies
present, and y0 is indeed equal to sum of components of x

Michael T. Heath Scientific Computing 9 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Example: DFT

For cyclic sequence x,

F8 x = F8



1
−1

1
−1

1
−1

1
−1


=



0
0
0
0
8
0
0
0


= y

Sequence has highest possible rate of oscillation (between
1 and −1) for this sampling rate

In transformed sequence, only nonzero component is at
Nyquist frequency (in this case y4)

Michael T. Heath Scientific Computing 10 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Computing DFT

By taking advantage of symmetries and redundancies in
definition of DFT, shortcut algorithm can be developed for
evaluating DFT very efficiently

For illustration, consider case n = 4

From definition of DFT

ym =
3∑

k=0

xk ωmk
n , m = 0, . . . , 3

Writing out four equations in full

y0 = x0ω
0
n + x1ω

0
n + x2ω

0
n + x3ω

0
n

y1 = x0ω
0
n + x1ω

1
n + x2ω

2
n + x3ω

3
n

y2 = x0ω
0
n + x1ω

2
n + x2ω

4
n + x3ω

6
n

y3 = x0ω
0
n + x1ω

3
n + x2ω

6
n + x3ω

9
n

Michael T. Heath Scientific Computing 11 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Computing DFT, continued
Noting that

ω0
n = ω4

n = 1, ω2
n = ω6

n = −1, ω9
n = ω1

n

and regrouping, we obtain four equations

y0 = (x0 + ω0
nx2) + ω0

n(x1 + ω0
nx3)

y1 = (x0 − ω0
nx2) + ω1

n(x1 − ω0
nx3)

y2 = (x0 + ω0
nx2) + ω2

n(x1 + ω0
nx3)

y3 = (x0 − ω0
nx2) + ω3

n(x1 − ω0
nx3)

DFT can now be computed with only 8 additions or
subtractions and 6 multiplications, instead of expected
(4− 1) ∗ 4 = 12 additions and 42 = 16 multiplications

Actually, even fewer multiplications are required for this
small case, since ω0

n = 1, but we have tried to illustrate how
algorithm works in general

Michael T. Heath Scientific Computing 12 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Computing DFT, continued

Main point is that computing DFT of original 4-point
sequence has been reduced to computing DFT of its two
2-point even and odd subsequences

This property holds in general: DFT of n-point sequence
can be computed by breaking it into two DFTs of half
length, provided n is even

General pattern becomes clearer when viewed in terms of
first few Fourier matrices

F1 = 1, F2 =
[
1 1
1 −1

]
, F4 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 , . . .

Michael T. Heath Scientific Computing 13 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Computing DFT, continued

Let P4 be permutation matrix

P4 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


and D2 be diagonal matrix

D2 = diag(1, ω4) =
[
1 0
0 −i

]
Then

F4P4 =


1 1 1 1
1 −1 −i i

1 1 −1 −1
1 −1 i −i

 =
[
F2 D2F2

F2 −D2F2

]

Michael T. Heath Scientific Computing 14 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Computing DFT, continued

Thus, F4 can be rearranged so that each block is
diagonally scaled version of F2

Such hierarchical splitting can be carried out at each level,
provided number of points is even

In general, Pn is permutation that groups even-numbered
columns of Fn before odd-numbered columns, and

Dn/2 = diag
(
1, ωn, . . . , ω(n/2)−1

n

)
To apply Fn to sequence of length n, we need merely
apply Fn/2 to its even and odd subsequences and scale
results, where necessary, by ±Dn/2

Resulting recursive divide-and-conquer algorithm for
computing DFT is called fast Fourier transform, or FFT

Michael T. Heath Scientific Computing 15 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

FFT Algorithm

procedure fft(x, y, n, ω)
if n = 1 then

y[0] = x[0]
else

for k = 0 to (n/2)− 1
p[k] = x[2k]
s[k] = x[2k + 1]

end
fft(p, q, n/2, ω2)
fft(s, t, n/2, ω2)
for k = 0 to n− 1

y[k] = q[k mod (n/2)]+
ωkt[k mod (n/2)]

end
end

{ bottom of recursion }

{ split into even and
odd subsequences }

{ call fft procedure
recursively }

{ combine results }

Michael T. Heath Scientific Computing 16 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

FFT Algorithm, continued

There are log2 n levels of recursion, each of which involves
O(n) arithmetic operations, so total cost is O(n log2 n)

For clarity, separate arrays were used for subsequences,
but transform can be computed in place using no additional
storage

Input sequence is assumed complex; if input sequence is
real, then additional symmetries in DFT can be exploited to
reduce storage and operation count by half

Output sequence is not produced in natural order, but
either input or output sequence can be rearranged at cost
of O(n log2 n), analogous to sorting

Michael T. Heath Scientific Computing 17 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

FFT Algorithm, continued

FFT algorithm can be formulated using iteration rather than
recursion, which is often desirable for greater efficiency or
when using programming language that does not support
recursion

Despite its name, fast Fourier transform is an algorithm,
not a transform

It is particular way of computing DFT of sequence in
efficient manner

< interactive example >

Michael T. Heath Scientific Computing 18 / 32

http://www.cse.uiuc.edu/iem/fft/rcrsvfft/


Discrete Fourier Transform
Fast Fourier Transform

Applications

Complexity of FFT

DFT is defined in terms of matrix-vector product, whose
straightforward evaluation would appear to require O(n2)
arithmetic operations

Use of FFT algorithm reduces work to only O(n log2 n),
which makes enormous practical difference in time
required to transform large sequences

n n log2 n n2

64 384 4096
128 896 16384
256 2048 65536
512 4608 262144

1024 10240 1048576

Michael T. Heath Scientific Computing 19 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Inverse Transform

Due to similar form of DFT and its inverse (only sign of
exponent differs), FFT algorithm can also be used to
compute inverse DFT efficiently

Ability to transform back and forth quickly between time
and frequency domains makes it practical to perform
computations or analysis that may be required in
whichever domain is more convenient and efficient

Michael T. Heath Scientific Computing 20 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Limitations of FFT

FFT algorithm is not always applicable or maximally
efficient
Input sequence is assumed to be

Equally spaced
Periodic
Power of two in length

First two of these follow from definition of DFT, while third
is required for maximal efficiency of FFT algorithm

Care must be taken in applying FFT algorithm to produce
most meaningful results as efficiently as possible

For example, transforming sequence that is not really
periodic or padding sequence to make its length power of
two may introduce spurious noise and complicate
interpretation of results < interactive example >

Michael T. Heath Scientific Computing 21 / 32

http://www.cse.uiuc.edu/iem/fft/padoptns/


Discrete Fourier Transform
Fast Fourier Transform

Applications

Mixed-Radix FFT

Mixed-radix FFT algorithm does not require number of
points n to be power of two

More general algorithm is still based on divide and
conquer, with sequence being split at each level by
smallest prime factor of length of remaining sequence

Efficiency depends on whether n is product of small primes
(ideally power of two)

If not, then much of computational advantage of FFT may
be lost

For example, if n itself is prime, then sequence cannot be
split at all, and “fast” algorithm becomes standard O(n2)
matrix-vector multiplication

Michael T. Heath Scientific Computing 22 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Applications of DFT

DFT is often of direct interest itself and is also useful as
computational tool that provides efficient means for
computing other quantities

By its nature, DFT can be used to detect periodicities or
cycles in discrete data, and to remove unwanted
periodicities

For example, to remove high-frequency noise, compute
DFT of sequence, set high-frequency components of
transformed sequence to zero, then compute inverse DFT
of modified sequence to get back into original domain

Michael T. Heath Scientific Computing 23 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Applications of DFT, continued

As another example, weather data often contain two
distinct cycles, diurnal (daily) and annual (yearly), and one
might want to remove one to study the other in isolation

Economic data are also often “seasonally adjusted” by
removing unwanted periodicities to reveal “secular” trends

Because of such uses, DFT is of vital importance in many
aspects of signal processing, such as digital filtering

< interactive example >

Michael T. Heath Scientific Computing 24 / 32

http://www.cse.uiuc.edu/iem/fft/dgtlfltr/


Discrete Fourier Transform
Fast Fourier Transform

Applications

Applications of DFT, continued

Some computations are simpler or more efficient in
frequency domain than in time domain

Examples include discrete convolution of two sequences u
and v of length n

{u ? v}m =
n−1∑
k=0

vkum−k, m = 0, 1, . . . , n− 1

and related quantities such as cross-correlation of two
sequences or autocorrelation of a sequence with itself

Equivalent operation in frequency domain is simply
pointwise multiplication (plus complex conjugation in some
cases)

Michael T. Heath Scientific Computing 25 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Applications of DFT, continued

If DFT and its inverse can be computed efficiently, then it
may be advantageous to transform to frequency domain to
compute such convolutions, then transform back to time
domain

For example, to compute convolution or correlation of two
sequences, it is often advantageous to use FFT algorithm
to compute DFT of both sequences, compute pointwise
product in frequency domain, then inverse DFT back to
time domain, again via FFT algorithm

FFT algorithm also forms basis for exceptionally efficient
methods for solving certain periodic boundary value
problems, such as Poisson’s equation on regular domain
with periodic boundary conditions

Michael T. Heath Scientific Computing 26 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Fast Polynomial Multiplication

FFT algorithm also provides fast methods for some
computations that might not seem related to it

For example, complexity of straightforward multiplication of
two polynomials is proportional to product of their degrees

However, polynomial of degree n− 1 is uniquely
determined by its values at n distinct points

Thus, product polynomial can be determined by
interpolation from pointwise product of factor polynomials
evaluated at n points

Both polynomial evaluation and interpolation using n points
would normally require O(n2) operations, but by choosing
points to be nth roots of unity, FFT algorithm can be used
to reduce complexity to O(n log2 n)

Michael T. Heath Scientific Computing 27 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Wavelets

Sine and cosine functions used in Fourier analysis are very
smooth (infinitely differentiable), and very broad (nonzero
almost everywhere on real line)

They are not very effective for representing functions that
change abruptly or have highly localized support

Gibbs phenomenon in Fourier representation of square
wave (“ringing” at corners) is one manifestation of this

In response to this shortcoming, there has been intense
interest in recent years in new type of basis functions
called wavelets

Michael T. Heath Scientific Computing 28 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Wavelets, continued

Wavelet basis is generated from single function φ(x),
called mother wavelet or scaling function, by dilation and
translation, φ((x− b)/a), where a, b ∈ R with a 6= 0

There are many choices for mother wavelet, with choice
trading off smoothness vs compactness

Commonly used family of wavelets is due to Daubechies,
example of which is shown below

Michael T. Heath Scientific Computing 29 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Wavelets, continued

Typical choices for dilation and translation parameters are
a = 2−j and b = k2j , where j and k are integers, so that
φjk(x) = φ(2jx− k)

If mother wavelet φ(x) has sufficiently localized support,
then ∫

φjkφmn = 0

whenever indices do not both match, so doubly-indexed
basis functions φjk(x) are orthogonal

By replicating mother wavelet at many different scales, it is
possible to mimic behavior of any function at many different
scales; this property of wavelets is called multiresolution

Michael T. Heath Scientific Computing 30 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Wavelets, continued

Fourier basis functions are localized in frequency but not in
time: small changes in frequency produce changes
everywhere in time domain

Wavelets are localized in both frequency (by dilation) and
time (by translation)

This localization tends to make wavelet representation of
function very sparse

Michael T. Heath Scientific Computing 31 / 32



Discrete Fourier Transform
Fast Fourier Transform

Applications

Discrete Wavelet Transform

As with Fourier transform, there is analogous discrete
wavelet transform, or DWT

DWT and its inverse can be computed very efficiently by
pyramidal, hierarchical algorithm

Sparsity of wavelet basis makes computation of DWT even
faster than FFT

DWT requires only O(n) work for sequence of length n,
instead of O(n log n)

Because of their efficiency, both in computation and in
compactness of representation, wavelets are playing an
increasingly important role in many areas of signal and
image processing, such as data compression, noise
removal, and computer vision

Michael T. Heath Scientific Computing 32 / 32


	Discrete Fourier Transform
	Fast Fourier Transform
	Applications

