EIGENVALUE PROBLEMS

- Background on eigenvalues/ eigenvectors / decompositions
- Perturbation analysis, condition numbers..
- Power method
- The QR algorithm
- Practical QR algorithms: use of Hessenberg form and shifts
- The symmetric eigenvalue problem.

Eigenvalue Problems. Introduction

Let A an $n \times n$ real nonsymmetric matrix. The eigenvalue problem:

$$Ax = \lambda x \quad \lambda \in \mathbb{C} : \text{eigenvalue}$$

$$x \in \mathbb{C}^n : \text{eigenvector}$$

Types of Problems:

- Compute a few λ_i’s with smallest or largest real parts;
- Compute all λ_i’s in a certain region of \mathbb{C};
- Compute a few of the dominant eigenvalues;
- Compute all λ_i’s.

Eigenvalue Problems. Their origins

- Structural Engineering $[Ku = \lambda Mu]$
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Bifurcation analysis [e.g., in fluid flow]
- Electronic structure calculations [Schrödinger equation..]
- Application of new era: page ranking on the world-wide web.
Basic definitions and properties

A complex scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u in \mathbb{C}^n such that $Au = \lambda u$. The vector u is called an eigenvector of A associated with λ. The set of all eigenvalues of A is the ‘spectrum’ of A. Notation: $\Lambda(A)$.

λ is an eigenvalue iff the columns of $A - \lambda I$ are linearly dependent.

... equivalent to saying that its rows are linearly dependent. So: there is a nonzero vector w such that

$$w^H (A - \lambda I) = 0$$

w is a left eigenvector of A ($u=$ right eigenvector)

λ is an eigenvalue iff $\det(A - \lambda I) = 0$

Geometric multiplicity is \leq algebraic multiplicity.

An eigenvalue is simple if its (algebraic) multiplicity is one.

It is semi-simple if its geometric and algebraic multiplicities are equal.

An eigenvalue is a root of the Characteristic polynomial:

$$p_A(\lambda) = \det(A - \lambda I)$$

So there are n eigenvalues (counted with their multiplicities).

The multiplicity of these eigenvalues as roots of p_A are called algebraic multiplicities.

The geometric multiplicity of an eigenvalue λ_i is the number of linearly independent eigenvectors associated with λ_i.

Basic definitions and properties (cont.)
Consider

\[A = \begin{pmatrix} 1 & 2 & -4 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix} \]

Eigenvalues of \(A \)? their algebraic multiplicities? their geometric multiplicities? Is one a semi-simple eigenvalue?

Same questions if \(a_{33} \) is replaced by one.

Same questions if, in addition, \(a_{12} \) is replaced by zero.

\[\text{THEOREM (Schur form): Any matrix is unitarily similar to a triangular matrix, i.e., for any } A \text{ there exists a unitary matrix } Q \text{ and an upper triangular matrix } R \text{ such that } A = Q R Q^H \]

Any Hermitian matrix is unitarily similar to a real diagonal matrix, (i.e. its Schur form is real diagonal).

It is easy to read off the eigenvalues (including all the multiplicities) from the triangular matrix \(R \)

Eigenvectors can be obtained by back-solving.
Show that there is at least one eigenvalue and eigenvector of A: $Ax = \lambda x$, with $\|x\|_2 = 1$.

There is a unitary transformation P such that $Px = e_1$. How do you define P?

Show that $PAP^H = \begin{pmatrix} \lambda & * \\ 0 & A_2 \end{pmatrix}$.

Apply process recursively to A_2.

What happens if A is Hermitian?

Another proof altogether: use Jordan form of A and QR factorization.

Localization: where are the eigenvalues located in \mathbb{C}?

Perturbation analysis: If A is perturbed how does an eigenvalue change? How about an eigenvector?

Also: sensitivity of an eigenvalue to perturbations

Next result is a “localization” theorem

We have seen one such result before. Let $\| \cdot \|$ be a matrix norm.

Then:

$$\forall \lambda \in \Lambda(A) : |\lambda| \leq \|A\|$$

All eigenvalues are located in a disk of radius $\|A\|$ centered at 0.

More refined result: Gerschgorin

THEOREM [Gerschgorin]

$$\forall \lambda \in \Lambda(A), \exists i \text{ such that } |\lambda - a_{ii}| \leq \sum_{\substack{j=1 \atop j \neq i}}^{n} |a_{ij}| .$$

In words: eigenvalue λ is located in one of the closed discs of the complex plane centered at a_{ii} and with radius $\rho_i = \sum_{j \neq i} |a_{ij}| .$

Proof: By contradiction. If contrary is true then there is one eigenvalue λ that does not belong to any of the disks, i.e., such that $|\lambda - a_{ii}| > \rho_i$ for all i. Write matrix $A - \lambda I$ as:

$$A - \lambda I = D - \lambda I - [D - A] \equiv (D - \lambda I) - F$$

where D is the diagonal of A and $-F = -(D - A)$ is the matrix of off-diagonal entries. Now write

$$A - \lambda I = (D - \lambda I)(I - (D - \lambda I)^{-1}F).$$

From assumptions we have $\|(D - \lambda I)^{-1}F\|_\infty < 1$. (Show this). The Lemma in P. 5.3 of notes would then show that $A - \lambda I$ is nonsingular — a contradiction \(\square\)
Gerschgorin’s theorem - example

Find a region of the complex plane where the eigenvalues of the following matrix are located:

\[A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ -1 & -2 & -3 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 & -4 \end{pmatrix} \]

- Refinement: if disks are all disjoint then each of them contains one eigenvalue
- Refinement: can combine row and column version of the theorem (column version: apply theorem to \(A^H \)).

Bauer-Fike theorem

THEOREM [Bauer-Fike] Let \(\tilde{\lambda}, \tilde{u} \) be an approximate eigenpair with \(\|\tilde{u}\|_2 = 1 \), and let \(r = A\tilde{u} - \tilde{\lambda}\tilde{u} \) (‘residual vector’). Assume \(\tilde{A} \) is diagonalizable: \(\tilde{A} = XD\tilde{X}^{-1} \), with \(D \) diagonal. Then

\[\exists \lambda \in \Lambda(A) \quad \text{such that} \quad |\lambda - \tilde{\lambda}| \leq \text{cond}_2(X)\|r\|_2. \]

- Alternative formulation. If \(E \) is a perturbation to \(A \) then for any eigenvalue \(\tilde{\lambda} \) of \(A + E \) there is an eigenvalue \(\lambda \) of \(A \) such that:

\[|\lambda - \tilde{\lambda}| \leq \text{cond}_2(X)\|E\|_2. \]

- Very restrictive result - also not too sharp in general.
Assume that \(\lambda \) is a simple eigenvalue with right and left eigenvectors \(u \) and \(w^H \) respectively. Consider the matrices:

\[
A(t) = A + tE
\]

Towards the eigenvalue \(\lambda(t) \), Eigenvector \(u(t) \).

Conditioning of \(\lambda \) of \(A \) relative to \(E \) is

\[
\left| \frac{d\lambda(t)}{dt} \right|_{t=0}
\]

Write

\[
A(t)u(t) = \lambda(t)u(t)
\]

Then multiply both sides to the left by \(w^H \)

\[
w^H(A(t) + tE)u(t) = \lambda(t)w^Hu(t) \rightarrow \lambda(t)w^Hu(t) = w^HAu(t) + tw^Heu(t)
\]

\[
= \lambda w^Hu(t) + tw^Heu(t).
\]

Take the limit at \(t = 0 \),

\[
\lambda'(0) = w^Heu
\]

\[
\frac{\lambda(t) - \lambda}{t} w^Hu(t) = w^Heu(t)
\]

Note: the left and right eigenvectors associated with a simple eigenvalue cannot be orthogonal to each other.

Actual conditioning of an eigenvalue, given a perturbation “in the direction of \(E \)” is \(|\lambda'(0)| \).

In practice only estimate of \(\|E\| \) is available, so

\[
|\lambda'(0)| \leq \frac{\|Eu\|_2\|w\|_2}{\|u\|_2\|w\|_2} \leq \frac{\|E\|_2\|u\|_2\|w\|_2}{\|u\|\|w\|}
\]

Example: Consider the matrix

\[
A = \begin{pmatrix}
-149 & -50 & -154 \\
537 & 180 & 546 \\
-27 & -9 & -25
\end{pmatrix}
\]

Definition. The condition number of a simple eigenvalue \(\lambda \) of an arbitrary matrix \(A \) is defined by

\[
\text{cond}(\lambda) = \frac{1}{\cos \theta(u,w)}
\]

in which \(u \) and \(w^H \) are the right and left eigenvectors, respectively, associated with \(\lambda \).
\(\Lambda(A) = \{1, 2, 3\} \). Right and left eigenvectors associated with
\(\lambda_1 = 1 \):
\[
\begin{bmatrix}
0.3162 \\
-0.9487 \\
0.0
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
0.6810 \\
0.2253 \\
0.6967
\end{bmatrix}
\]
So: \(\text{cond}(\lambda_1) \approx 603.64 \)

Perturbing \(a_{11} \) to \(-149.01\) yields the spectrum:
\(\{0.2287, 3.2878, 2.4735\} \).

as expected.

Perturbations with Multiple Eigenvalues - Example

Consider \(A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \)

Worst case perturbation is in 3,1 position: set \(A_{31} = \epsilon \).

Eigenvalues of perturbed \(A \) are the roots of
\[p(\mu) = (\mu - 1)^3 - 4 \cdot \epsilon. \]

Roots:
\[\mu_k = 1 + (4\epsilon)^{1/3} e^{2k\pi i / 3}, \quad k = 1, 2, 3 \]

Hence eigenvalues of perturbed \(A \) are \(1 + O(\sqrt{\epsilon}) \).

If index of eigenvalue (dimension of largest Jordan block) is \(k \), then an \(O(\epsilon) \) perturbation to \(A \) leads to \(O(\sqrt{\epsilon}) \) change in eigenvalue. Simple eigenvalue case corresponds to \(k = 1 \).

Basic algorithm: The power method

Basic idea is to generate the sequence of vectors \(A^k v_0 \) where
\(v_0 \neq 0 \) – then normalize.

Most commonly used normalization: ensure that the largest component of the approximation is equal to one.
The Power Method

1. Choose a nonzero initial vector $v^{(0)}$.
2. For $k = 1, 2, \ldots$, until convergence, Do:
 3. $\alpha_k = \text{argmax}_{i=1, \ldots, n} |(Av^{(k-1)})_i|$
 4. $v^{(k)} = \frac{1}{\alpha_k} Av^{(k-1)}$
5. EndDo

$\text{argmax}_{i=1, \ldots, n} |x_i| \equiv \text{the component } x_i \text{ with largest modulus}$

Convergence of the power method

THEOREM Assume there is one eigenvalue λ_1 of A, s.t. $|\lambda_1| > |\lambda_j|$, for $j \neq i$, and that λ_1 is semi-simple. Then either the initial vector $v^{(0)}$ has no component in $\text{Null}(A - \lambda_1 I)$ or $v^{(k)}$ converges to an eigenvector associated with λ_1 and $\alpha_k \to \lambda_1$.

Proof in the diagonalizable case.

- $v^{(k)}$ is = vector $A^k v^{(0)}$ normalized by a certain scalar $\hat{\alpha}_k$ in such a way that its largest component is 1.
- Decompose initial vector $v^{(0)}$ in the eigenbasis as:
 \[v^{(0)} = \sum_{i=1}^{n} \gamma_i u_i \]
 - Each u_i is an eigenvector associated with λ_i.

Note that $A^k u_i = \lambda_i^k u_i$

\[
v^{(k)} = \frac{1}{\text{scaling}} \times \sum_{i=1}^{n} \lambda_i^k \gamma_i u_i = \frac{1}{\text{scaling}} \times \left[\lambda_1^k \gamma_1 u_1 + \sum_{i=2}^{n} \lambda_i^k \gamma_i u_i \right] = \frac{1}{\text{scaling'}} \times \left[u_1 + \sum_{i=2}^{n} \left(\frac{\lambda_i}{\lambda_1} \right)^k \frac{\gamma_i}{\gamma_1} u_i \right]
\]
- Second term inside bracket converges to zero. QED
- Proof suggests that the convergence factor is given by
 \[\rho_D = \frac{|\lambda_2|}{|\lambda_1|} \]
where λ_2 is the second largest eigenvalue in modulus.
Example: Consider a ‘Markov Chain’ matrix of size $n = 55$. Dominant eigenvalues are $\lambda = 1$ and $\lambda = -1$. The power method applied directly to A fails. (Why?)

We can consider instead the matrix $I + A$. The eigenvalue $\lambda = 1$ is then transformed into the (only) dominant eigenvalue $\lambda = 2$.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Norm of diff.</th>
<th>Res. norm</th>
<th>Eigenvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.639D-01</td>
<td>0.276D-01</td>
<td>1.02591636</td>
</tr>
<tr>
<td>40</td>
<td>0.129D-01</td>
<td>0.513D-02</td>
<td>1.00680780</td>
</tr>
<tr>
<td>60</td>
<td>0.192D-02</td>
<td>0.808D-03</td>
<td>1.00102145</td>
</tr>
<tr>
<td>80</td>
<td>0.280D-03</td>
<td>0.121D-03</td>
<td>1.00014720</td>
</tr>
<tr>
<td>100</td>
<td>0.400D-04</td>
<td>0.174D-04</td>
<td>1.00002145</td>
</tr>
<tr>
<td>120</td>
<td>0.562D-05</td>
<td>0.247D-05</td>
<td>1.00000289</td>
</tr>
<tr>
<td>140</td>
<td>0.781D-06</td>
<td>0.344D-06</td>
<td>1.00000040</td>
</tr>
<tr>
<td>161</td>
<td>0.973D-07</td>
<td>0.430D-07</td>
<td>1.00000005</td>
</tr>
</tbody>
</table>

The Shifted Power Method

In previous example shifted A into $B = A + I$ before applying power method. We could also iterate with $B(\sigma) = A + \sigma I$ for any positive σ.

Example: With $\sigma = 0.1$ we get the following improvement.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Norm of diff.</th>
<th>Res. norm</th>
<th>Eigenvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.273D-01</td>
<td>0.794D-02</td>
<td>1.00524001</td>
</tr>
<tr>
<td>40</td>
<td>0.729D-03</td>
<td>0.210D-03</td>
<td>1.00016755</td>
</tr>
<tr>
<td>60</td>
<td>0.183D-04</td>
<td>0.509D-05</td>
<td>1.00000446</td>
</tr>
<tr>
<td>80</td>
<td>0.437D-06</td>
<td>0.118D-06</td>
<td>1.00000011</td>
</tr>
<tr>
<td>88</td>
<td>0.971D-07</td>
<td>0.261D-07</td>
<td>1.00000002</td>
</tr>
</tbody>
</table>

Question: What is the best shift-of-origin σ to use?

Easy to answer the question when all eigenvalues are real.

Assume all eigenvalues are real and labeled decreasingly: $\lambda_1 > \lambda_2 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

Then: If we shift A to $A - \sigma I$:

The shift σ that yields the best convergence factor is:

$$\sigma_{\text{opt}} = \frac{\lambda_2 + \lambda_n}{2}$$

Plot a typical convergence factor $\phi(\sigma)$ as a function of σ. Determine the minimum value and prove the above result.

Inverse Iteration

Observation: The eigenvectors of A and A^{-1} are identical.

Idea: use the power method on A^{-1}.

Will compute the eigenvalues closest to zero.

Shift-and-invert Use power method on $[A - \sigma I]^{-1}$.

will compute eigenvalues closest to σ.

Rayleigh-Quotient Iteration: use $\sigma = \frac{v^T Av}{v^T v}$ (best approximation to λ given v).

Advantages: fast convergence in general.

Drawbacks: need to factor A (or $A - \sigma I$) into LU.