

C S C I 5304

Fall 2021

COMPUTATIONAL ASPECTS OF MATRIX THEORY

Class time : MW 4:00 - 5:15 pmRoom : Keller 3-230 or Online Daniel Bolev Instructor :

Lecture notes:

http://www-users.cselabs.umn.edu/classes/Fall-2021/csci5304/

August 27, 2021

THE URV & SINGULAR VALUE DECOMPOSITIONS

- Orthogonal subspaces;
- Orthogonal projectors: Orthogonal decomposition;
- The URV decomposition
- Introduction to the Singular Value Decomposition
- The SVD existence and properties.

Orthogonal projectors and subspaces

Notation: Given a supspace \mathcal{X} of \mathbb{R}^m define

$$\mathcal{X}^{\perp} = \{y \mid y \perp x, \;\; orall \; x \; \in \mathcal{X} \}$$

Let $Q=[q_1,\cdots,q_r]$ an orthonormal basis of ${\mathcal X}$

Mow would you obtain such a basis?

Then define orthogonal projector $P = QQ^T$

Properties

- (a) $P^2=P$ (b) $(I-P)^2=I-P$ (c) $Ran(P)=\mathcal{X}$ (d) $Null(P)=\mathcal{X}^\perp$
- (e) $Ran(I-P) = Null(P) = \mathcal{X}^{\perp}$
- Note that (b) means that I-P is also a projector

GvL 2.4, 5.4-5 - SVD

Proof. (a), (b) are trivial

(c): Clearly $Ran(P) = \{x | \ x = QQ^Ty, y \in \mathbb{R}^r\} \subset \mathcal{X}$. $\overline{\mathsf{Any}\ x} \in \ \mathcal{X}$ is of the form $x = Qy, y \in \mathbb{R}^r$. Take Px = $QQ^T(Qy) = Qy = x$. Since x = Px, $x \in Ran(P)$. So $\mathcal{X} \subseteq Ran(P)$. In the end $\mathcal{X} = Ran(P)$.

(d): $x \in \mathcal{X}^{\perp} \leftrightarrow (x,y) = 0, \forall y \in \mathcal{X} \leftrightarrow (x,Qz) =$ $\overline{0, \forall z} \in \mathbb{R}^r \leftrightarrow (Q^T x, z) = 0, \forall z \in \mathbb{R}^r \leftrightarrow Q^T x = 0 \leftrightarrow$ $QQ^Tx = 0 \leftrightarrow Px = 0.$

(e): Need to show inclusion both ways.

- $\bullet \ x \in Null(P) \leftrightarrow Px = 0 \leftrightarrow (I P)x = x \rightarrow$ $x \in Ran(I-P)$
- $ullet x \in Ran(I-P) \leftrightarrow \exists y \in \mathbb{R}^m | x = (I-P)y \Rightarrow$ $Px = P(I - P)y = 0 \rightarrow x \in Null(P)$

GvL 2.4, 5.4-5 - SVD

Result: Any $x \in \mathbb{R}^m$ can be written in a unique way as

$$x=x_1+x_2, \quad x_1 \ \in \ \mathcal{X}, \quad x_2 \ \in \ \mathcal{X}^\perp$$

- ightharpoonup Proof: Just set $x_1=Px, \quad x_2=(I-P)x$
- $ightharpoonup \operatorname{Note}: \mathcal{X} \cap \mathcal{X}^{\perp} = \{0\}$
- ightharpoonup Therefore: $\mathbb{R}^m = \mathcal{X} \oplus \mathcal{X}^\perp$
- ➤ Called the Orthogonal Decomposition

GvL 2.4, 5.4-5 – SVI

9-4

$Four\ fundamental\ supspaces\ \text{-}\ URV\ decomposition$

Let $A \in \mathbb{R}^{m imes n}$ and consider $\mathrm{Ran}(A)^{\perp}$

Property 1:
$$\operatorname{Ran}(A)^{\perp} = Null(A^T)$$

Proof: $x \in \operatorname{Ran}(A)^{\perp}$ iff (Ay,x)=0 for all y iff $(y,A^Tx)=0$ for all y ...

Property 2:
$$\operatorname{Ran}(A^T) = Null(A)^{\perp}$$

ightharpoonup Take $\mathcal{X}=\operatorname{Ran}(A)$ in orthogonal decomoposition. ightharpoonup Result:

$$\mathbb{R}^m = Ran(A) \oplus Null(A^T) \ \mathbb{R}^n = Ran(A^T) \oplus Null(A)$$

 $egin{array}{ll} 4 & ext{fundamental subspaces} \ Ran(A) & Null(A^T) \ Ran(A^T) & Null(A) \end{array}$

9-6 GvL 2.4, 5.4-5 – SVD

Orthogonal decomposition

- In other words $\mathbb{R}^m=P\mathbb{R}^m\oplus (I-P)\mathbb{R}^m$ or: $\mathbb{R}^m=Ran(P)\oplus Ran(I-P)$ or: $\mathbb{R}^m=Ran(P)\oplus Null(P)$ or: $\mathbb{R}^m=Ran(P)\oplus Ran(P)^\perp$
- igwedge Can complete basis $\{q_1,\cdots,q_r\}$ into orthonormal basis of \mathbb{R}^m , q_{r+1},\cdots,q_m
- $lacksquare \{q_{r+1},\cdots,q_m\}=$ basis of \mathcal{X}^\perp . $ightarrow egin{array}{c} dim(\mathcal{X}^\perp)=m-r. \end{array}$

9-5 GvL 2.4. 5.4-5 – SVD

9-5

 \blacktriangleright Express the above with bases for \mathbb{R}^m :

$$[\underbrace{u_1,u_2,\cdots,u_r}_{Ran(A)},\underbrace{u_{r+1},u_{r+2},\cdots,u_m}_{oldsymbol{Null}(oldsymbol{A^T})}]$$

and for
$$\mathbb{R}^n$$
 $[\underbrace{v_1,v_2,\cdots,v_r}_{Ran(A^T)},\underbrace{v_{r+1},v_{r+2},\cdots,v_n}_{Null(A)}]$

lacksquare Observe $u_i^T A v_j = 0$ for i>r or j>r. Therefore

$$U^TAV = R = egin{pmatrix} C & 0 \ 0 & 0 \end{pmatrix}_{m imes n} \quad C \in \ \mathbb{R}^{r imes r} \quad \longrightarrow$$

$$A = URV^T$$

➤ General class of URV decompositions

7 ______ GvL 2.4, 5.4-5 – SVD

9-6

Far from unique.

Show how you can get a decomposition in which C is lower (or upper) triangular, from the above factorization.

- ightharpoonup Can select decomposition so that R is upper triangular ightharpoonup decomposition.
- ightharpoonup Can select decomposition so that R is lower triangular ightarrow ULV decomposition.
- ightharpoonup SVD = special case of URV where $oldsymbol{R}=$ diagonal

How can you get the ULV decomposition by using only the Householder QR factorization (possibly with pivoting)? [Hint: you must use Householder twice]

9-8 GvL 2.4, 5.4-5 – SVD

9-8

Proof: Let $\sigma_1=\|A\|_2=\max_{x,\|x\|_2=1}\|Ax\|_2$. There exists a pair of unit vectors v_1,u_1 such that

$$Av_1 = \sigma_1 u_1$$

The Singular Value Decomposition (SVD)

Theorem For any matrix $A\in\mathbb{R}^{m imes n}$ there exist unitary matrices $U\in\mathbb{R}^{m imes m}$ and $V\in\mathbb{R}^{n imes n}$ such that

$$A = U\Sigma V^T$$

where Σ is a diagonal matrix with entries $\sigma_{ii} \geq 0$.

$$\sigma_{11} \geq \sigma_{22} \geq \cdots \sigma_{pp} \geq 0$$
 with $p = \min(n,m)$

ightharpoonup The σ_{ii} 's are the singular values. Notation change σ_{ii} \longrightarrow σ_{i}

-8 ______ GvL 2.4, 5.4-5 – SVD

9-8

lacksquare Complete v_1 into an orthonormal basis of \mathbb{R}^n

$$oldsymbol{V} \equiv [v_1, V_2] = n imes n$$
 unitary

 \blacktriangleright Complete u_1 into an orthonormal basis of \mathbb{R}^m

$$oldsymbol{U} \equiv [u_1, U_2] = m imes m$$
 unitary

Define U, V as single Householder reflectors.

➤ Then, it is easy to show that

$$AV = U imes egin{pmatrix} m{\sigma}_1 & m{w}^T \ 0 & B \end{pmatrix} \; o \; U^T A V = egin{pmatrix} m{\sigma}_1 & m{w}^T \ 0 & B \end{pmatrix} \equiv A_1$$

-9 _____ GvL 2.4, 5.4-5 – SVD

9-10

GvL 2.4, 5.4-5 - SVD

Observe that

$$\left\|A_1 \left(m{\sigma}_1 top w
ight)
ight\|_2 \geq \sigma_1^2 + \|w\|^2 = \sqrt{\sigma_1^2 + \|w\|^2} \left\|inom{\sigma_1}{w}
ight\|_2$$

- This shows that w must be zero [why?]
- Complete the proof by an induction argument.

The "thin" SVD

Consider the Case-1. It can be rewritten as

$$A = \left[U_1 U_2
ight] egin{pmatrix} \Sigma_1 \ 0 \end{pmatrix} \ V^T$$

Which gives:

$$A = U_1 \Sigma_1 V^T$$

where U_1 is $m \times n$ (same shape as A), and Σ_1 and V are $n \times n$

Referred to as the "thin" SVD. Important in practice.

How can you obtain the thin SVD from the QR factorization of A and the SVD of an $n \times n$ matrix?

Case 1:

Case 2:

A few properties. | Assume that

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$
 and $\sigma_{r+1} = \cdots = \sigma_p = 0$

Then:

- rank(A) = r = number of nonzero singular values.
- $\operatorname{Ran}(A) = \operatorname{span}\{u_1, u_2, \dots, u_r\}$
- $Null(A^T) = span\{u_{r+1}, u_{r+2}, \dots, u_m\}$
- $\bullet \operatorname{Ran}(A^T) = \operatorname{span}\{v_1, v_2, \dots, v_r\}$
- Null(A) = span $\{v_{r+1}, v_{r+2}, \dots, v_n\}$

GvL 2.4, 5.4-5 - SVD

GvL 2.4, 5.4-5 - SVD

Properties of the SVD (continued)

• The matrix **A** admits the SVD expansion:

$$A = \sum_{i=1}^r \sigma_i u_i v_i^T$$

- ullet $\|A\|_2 = \sigma_1 =$ largest singular value
- ullet $\|A\|_F = \left(\sum_{i=1}^r \sigma_i^2
 ight)^{1/2}$
- ullet When A is an n imes n nonsingular matrix then $\|A^{-1}\|_2=1/\sigma_n$

9-14 ______ GvL 2.4, 5.4-5 – SVD

9-14

Proof: First: $\|A-B\|_2 \geq \sigma_{k+1}$, for any rank-k matrix B. Consider $\mathcal{X}=\mathrm{span}\{v_1,v_2,\cdots,v_{k+1}\}$. Note: $dim(Null(B))=n-k \to Null(B)\cap \mathcal{X}
eq \{0\}$ [Why?]

Theorem Let k < r and

$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$$

then

$$\min_{rank(B)=k} \|A-B\|_2 = \|A-A_k\|_2 = \pmb{\sigma}_{k+1}$$

9-15 ______ GvL 2.4, 5.4-5 - SVD

9-15

Let $x_0\in Null(B)\cap \mathcal{X},\ x_0\neq 0$. Write $x_0=Vy$. Then $\|(A-B)x_0\|_2=\|Ax_0\|_2=\|U\Sigma V^TVy\|_2=\|\Sigma y\|_2$ But $\|\Sigma y\|_2\geq \sigma_{k+1}\|x_0\|_2$ (Show this). $\to \|A-B\|_2\geq \sigma_{k+1}$ Second: take $B=A_k$. Achieves the min. \square

L-15 GvL 2.4, 5.4-5 – SVD

9-16

GvL 2.4, 5.4-5 – SVD

Right and Left Singular vectors:

$$egin{aligned} Av_i &= \sigma_i u_i \ A^T u_j &= \sigma_j v_j \end{aligned}$$

- lacksquare Consequence $A^TAv_i=\sigma_i^2v_i$ and $AA^Tu_i=\sigma_i^2u_i$
- ightharpoonup Right singular vectors (v_i) 's are eigenvectors of A^TA
- \triangleright Left singular vectors (u_i) 's are eigenvectors of AA^T
- ightharpoonup Possible to get the SVD from eigenvectors of AA^T and A^TA but: difficulties due to non-uniqueness of the SVD

9-17 ______ GvL 2.4, 5.4-5 - SVD

ightharpoonup Similarly, U gives the eigenvectors of AA^T .

$$AA^T = U \ \underbrace{egin{pmatrix} \Sigma_1^2 & 0 \ 0 & 0 \end{pmatrix}}_{m imes m} U^T$$

Important:

 $A^TA = VD_1V^T$ and $AA^T = UD_2U^T$ give the SVD factors U,V up to signs!

Define the r imes r matrix

$$\Sigma_1 = \operatorname{diag}(\sigma_1, \ldots, \sigma_r)$$

 \blacktriangleright Let $A \in \mathbb{R}^{m \times n}$ and consider $A^T A \in \mathbb{R}^{n \times n}$:

$$A^TA = V\Sigma^T\Sigma V^T \; o \; A^TA = V \; \underbrace{ egin{pmatrix} \Sigma_1^2 & 0 \ 0 & 0 \end{pmatrix} }_{n imes n} V^T$$

 \triangleright This gives the spectral decomposition of A^TA .

9-18 ______ GvL 2.4, 5.4-5 - SVD

9-18

9-19 GvL 2.4, 5.4-5 – SVD