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Abstract—Customizing and deploying an edge system is a time-
consuming and complex task, considering the hardware hetero-
geneity, third-party software compatibility, diverse performance
requirements, etc. In this paper, we present TinyEdge, a holistic
system for the rapid customization of edge systems. The key idea
of TinyEdge is to use a top-down approach for designing the
software and estimating the performance of the customized edge
systems under different hardware specifications. Developers select
and configure modules to specify the critical logic of their inter-
actions, without dealing with the specific hardware or software.
Taking the configuration as input, TinyEdge automatically gener-
ates the deployment package and estimate the performance after
sufficient profiling. TinyEdge provides a unified customization
framework for modules to specify their dependencies, function-
alities, interactions, and configurations. We implement TinyEdge
and evaluate its performance using real-world edge systems.
Results show that: 1) TinyEdge achieves rapid customization of
edge systems, reducing 44.15% of customization time and 67.79 %
lines of code on average compared with the state-of-the-art edge
platforms; 2) TinyEdge builds compact modules and optimizes
the latent circular dependency detection and message queuing
efficiency; 3) TinyEdge performance estimation has low average
absolute error in various settings.

I. INTRODUCTION

Recently, edge computing systems emerge as a promis-
ing approach to achieving low-latency computing and better
privacy protection. Edge computing can be applied in a
wide range of applications including video surveillance [1],
autonomous vehicle [2], and AR/VR [3], etc.

There exist several edge computing platforms both in
academia and industry. For example, Paradrop [4] is a specific
edge computing platform that provides computing and storage
resources at wireless APs. EdgeX [5] is an open-source project
whose primary purpose is to build an interoperable platform
to enable an ecosystem of plug-and-play components for
industrial IoT applications.

While these platforms have already shown their success in
a number of applications, we observe the existing approaches
are still insufficient in solving the following problems:

(1) Rapid customization of edge systems. Different from
edge applications, an edge system can be seen as the aggrega-
tion of applications. The more modules an edge system has, the
more applications it can support. However, hosting a rich set
of modules is usually not feasible, as edge computing devices
(e.g., wireless APs) have limited hardware resources compared
with cloud computing. It is essential that only application

required modules can be quickly deployed on the edge devices.
Moreover, it is also vital to allow users to specify the dataflow
interactions among these services easily.

(2) Accurate performance estimation. Edge devices are
in close proximity to IoT devices. As such, the resource
consumption and performance of the entire system depends on
the specific deployment strategy, e.g., the types of hardware
the edge system is deployed upon, the types of protocols con-
necting [oT devices and the edge devices. It is important that
we can estimate the resource consumption and performance
of the entire system and give guidance to developers on how
to deploy the customized systems on edge devices.

To address the above issues, we present TinyEdge, an edge-
computing system to enable rapid development and deploy-
ment for data-intensive IoT applications. TinyEdge inherits
many designs from existing works of literature: 1) Container-
based system architecture to achieve good extensibility at a
low cost. 2) Cloud-based backend through which application
required edge services can be flexibly downloaded and cus-
tomized to the edge devices. 3) Integration of popular modules
like device connector, time-series database, edge intelligent
data analysis services, visualization, etc.

However, we have several unique considerations.

First, existing container-based modules can not provide
enough flexibility in terms of customization. They rely on
RESTful API [5] or serverless function [6] to call different
functionalities or build interactions, which requires a certain
level of expertise and necessary configuration information; and
their configuration format is not so friendly to the novice,
either. TinyEdge abstracts different module configurations,
enables cross-module configuration sharing to reduce the
configuration overhead, provides a unified domain-specific
language to reduce the effort of application coding.

Second, present cloud-based backend falls short in multi-
dimensional consideration of performance modeling. State-of-
the-art industrial edge platforms like Azure IoT Edge [6] only
provide a coarse-grained cost model for each module without
considering the performance metrics like workload or latency
of an edge system. TinyEdge builds a multi-dimensional
performance model by considering unique features of different
modules through sufficient profiling, and selects from different
machine learning algorithms to attain higher accuracy.

We evaluate TinyEdge using real-world edge systems. Re-
sults show that: 1) TinyEdge achieves rapid customization of
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Fig. 1. Workflow overview of TinyEdge.

edge systems, reducing 44.15% of customization time and
67.79% lines of code on average compared with that of EdgeX
and Azure IoT Edge; 2) TinyEdge builds precise and practical
performance model, considers multi-dimensional information
for different kinds of modules.

The contributions of this work are summarized as below:

o We present TinyEdge, a holistic system for customizing
and deploying edge systems in a resource-aware manner.
TinyEdge offers various highly customizable modules
with little high-level configurations, automates detailed
procedures, enabling flexible customization and rapid
deployment of edge systems.

o We carefully consider different conditions in real-world
edge systems to build precise workload and latency
models for distinct types of modules.

o We design and implement a unified customization frame-
work for third-party modules that covers module depen-
dencies, interactions, and configuration sharing.

o We carefully evaluate TinyEdge using three concrete
cases. Results show that TinyEdge achieves rapid cus-
tomization of edge systems in terms of customization
time and lines of code reduction; generates accurate
performance estimation results in various metrics.

The rest of this paper is organized as follows: Section
II illustrates the system overview of TinyEdge, including
TinyEdge usage and design overview. Section III and IV expli-
cate the TinyEdge customization and performance estimation
service respectively. Section V presents the implementation
details of TinyEdge system. Section VI shows the evaluation
results. Section VII presents related works and Section VIII
concludes this work.

II. TINYEDGE OVERVIEW

In this section, we’ll give an overview of TinyEdge in terms
of system usage (Section II-A) and design (Section II-B).

A. TinyEdge Usage
In this subsection, we will illustrate how to use TinyEdge.
We use a typical IoT system as an example to present the
overall process when using TinyEdge. This system can pull
sensor data through MQTT protocol, store the data in InfluxD
and visualize them by Grafana. As shown in Fig. 1, a user
needs to perform the following five steps:
e Step. M) & @ Select MQTT Connector, InfluxDB, and
Grafana then provide necessary configurations (Fig. 4 and

composer.py
deploy.sh —Grafana
docker-compose.yaml| docker-compose.yaml
generator.py
—MQTT
docker-compose.yaml provisioning
Dockerfile dashboards
emgx.conf dashboard.json
emagx_web_hook.conf sample.yaml|
connect_influxDB
generator.py datasources
sample.yaml|
F—InfluxDB
docker-compose.yaml notifiers
generator.py sample.yaml

Fig. 2. Deployment package directory architecture of the IoT system.

5, detailed in Section III-A). The user will get a snapshot
of module profiles (Fig. 9, detailed in Section IV-A) that
contain the approximate minimal storage and memory
consumption of the customized system.

o Step. 3 & (4 Based on the resource consumption, the
user can choose to prepare a satisfactory hardware or
virtual platform to run the customized system and upload
the hardware specifications to get specific performance
models rather than general ones with default values.

o Step. (3 & (6) Then the users will get the deployment
package that consists of an OS-specific deployment tool
(detailed in Section V) with other necessary supplemen-
tary configuration files for each module. Fig. 2 shows the
deployment package directory architecture in this case.
Necessary configuration files are stored under separate
directories for each modules. composer.py in the root
directory is a script that aggregates module configura-
tions; while deploy.sh is the deployment tool to set up
environment and the customized edge system.

o Step. @D & After deploying the system, the user
writes application code (Fig. 7, detailed in Section III-B)
to specify the interaction logic, during which may trigger
system update.

We can see that TinyEdge workflow is clean and short; users
can customize and deploy typical edge computing systems
quickly. Performance model can provide a rough estimation of
the customized system, which help users to choose a satisfac-
tory hardware prototype more easily. Furthermore, TinyEdge
deployment tool can automate the process of system setup and
save time.

B. TinyEdge Design

Fig. 3 depicts the TinyEdge system architecture, including
the customization service (Section III) and the recommenda-
tion service (Section IV). The module list serves as the input
of TinyEdge and it’s passed to both modules:

o Inside the customization service, the configuration gener-
ator automatically generates the low-level configurations
by considering the typical configuration format of Dock-
erfiles and Docker-compose files for different modules, as
well as the dependency between them. The deployment
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Fig. 3. The overall architecture of TinyEdge.

package for the target customized system will then be
generated.

o Inside the performance estimation service, the perfor-
mance models takes module profiles as inputs, which
include the workload and latency model of different mod-
ules. The performance metrics under different hardware
specifications for the target customized system will then
be generated.

Note that the container-based system architecture makes
it possible to integrate other important edge service. For
example, we can easily add off-the-shelf secret store, API
gateway and user-role access control service to enhance system
security. Furthermore, the incorporation of Kubernetes enables
multi-tenant coordination among heterogeneous edge devices
and better utilization of extended computing resources like
GPU!. The above features make TinyEdge a more flexible
and reliable system.

III. CUSTOMIZATION SERVICE

The main purpose of TinyEdge customization service is
to provide a software and hardware agnostic, easy-to-use
system that users can easily ensemble a scenario-specific edge
system with much less effort without worrying about module
dependencies and write clean and short application code to
specify the key logic. In this section, we will explicate this
service from two aspects, system-level customization (Section
III-A), and application-level customization (Section III-B).

A. System-level Customization

In the system-level customization phase, the user first
selects modules and provides necessary configurations for
them. TinyEdge dependency checker will then check if the
current user-selected modules satisfy module dependency, load
necessary additional modules. To facilitate system-level rapid
customization, TinyEdge leverages a number of techniques
to provide easy configurations (reducing module configuring
time) and carefully-checked module dependencies (avoiding
module searching time).

!https://kubernetes.io/zh/docs/concepts/configuration/manage-resources-
containers/#extended-resources

Configuration reduction methods. After users selecting
all the modules, the necessary configurations for each module
are required to avoid module malfunction. Existing edge com-
puting platforms are developer-oriented. They assume their
users have certain level of developing expertise and left all the
configurations of Docker-based modules for users, neglecting
the steep learning curve of various edge modules and typical
configuration format of Docker/Kubernetes. While there are
plenty of configurations for each module, including module-
specific and Docker-specific ones. Not all of the configurations
are needed in most settings and some of them can be shared
across modules. In order to reduce module configuring time,
TinyEdge proposes the following two techniques.

(1) Configuration classification. For Docker-based modules,
existing edge computing platforms require users not only
learn module-specific configurations that have many items
but also attain complex format of Docker-specific configu-
rations. To enable rapid configuration, we pack up module
configurations into 1) basic configurations that a module needs
to operate normally and 2) advance ones that deal with
more complex situations or performance requirement with
default values. To handle sophisticated configuration format,
we maintain a configuration mapper between TinyEdge and
Dockerfile/Kubernetes. As a result, users only need to provide
basic configurations to run the customized system and the
advance ones are required only when necessary with much
less effort without knowing the detail configuration format of
Dockerfile/Kubernetes.

We revisit the example shown in Section II-A. Before
TinyEdge configuration classification technique is applied, a
novice user will first need to learn the configuration format
of both InfluxDB and Docker/Kubernetes , then provide the
information according to his own requirement from all config-
uration items listed on the left side of Fig. 4, and repeat this
procedure for all modules before he can finally deploy and run
the customized system. While after the technique is applied,
the user only need to follow the instruction of each TinyEdge
modules to provide a unified form of configurations, which
mostly are basic ones.

(2) Global configuration sharing. In modular settings, some-
times one module will share parts of its configurations with
another, especially for database modules. While existing edge
computing platforms treat each Docker-based module as a
standalone service, they either using RESTful API or server-
less function to exchange parameters at runtime or configuring
multiple times at startup. The problem is twofold: 1) the
shared configurations need to be set multiple times; 2) if
module A changes its shared configurations while B is not,
B may fail to operate normally. TinyEdge uses a placeholder
in the form of “#<module name>>.<configuration name>"" to
replace the shared configurations, so that the user can only fill
in the shared configuration once and TinyEdge configuration
generator will automatically handle the others. Moreover, the
shared configuration can also be overloaded by using the
“@overload” annotation.

We revisit the example shown in Section II-A. The user
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Fig. 4. Configuration classification example of InfluxDB.

Original Configurations

[ InfluxdB | [ Grafana
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workdir, restart, usrname, passwd,
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InfluxDB Grafana
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| Shared 1{1 Shared |
host, #InfluxDB.<host>
dbname, #InfluxDB.<dbname>
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passwd #InfluxDB.<passwd>
Fig. 5. Configuration sharing example of InfluxDB and Grafana.

wants to use Grafana to visualize the time-series data stored in
InfluxDB, he will need to provide host, dbname, dbport,
usrname, and passwd for both InfluxDB and Grafana. As
Fig. 5 shows, Grafana needs the configuration of InfluxDB,
and the user only needs to provide the shared configurations
once in InfluxDB, those in Grafana will be generated by
TinyEdge when used.

Fine-grained module dependency checking. As we know,
exhaustively checking package dependency when installing a
new one can be a tedious and time-consuming work. While
TinyEdge aims to provide rapid edge system deployment,
which sacrifices a certain level of portability to achieve more
reusability and thus keep each module small. As a result,
some TinyEdge modules may depend on other’s functionality
to operate. One way to resolve the problem is installing all
dependent modules. However it requires devices to equip
considerable computing resources, which may not suitable for
many low-end edge devices.

There are a plethora of package management tools like
APT [7] and YUM [8]. But they fall short in fine-grained
module dependency checking, especially in rapidly changing
edge computing scenarios, which requires highly customizable
modules. In such cases, a change of module configuration may
require dependency revision. While existing tools only check
dependency when a new package is about to install.

For example, TinyEdge stream data connector can be con-
figured to store streaming data locally or to a caching engine
like Redis. When users change the configuration from storing
data locally to a caching engine, its dependency change
from none to a caching engine. To cope with this situation,
TinyEdge designs a dependency checking mechanism and a
customization format.

In order to resolve fine-grained module dependency dynam-
ically, TinyEdge proposes a dependency checking mechanism,
which contains checking policies and the checking algorithm.

TinyEdge maintains a predefined global dependency topol-
ogy at run-time, when module configurations have changed,
either when users first set up a system or change it afterwards,
the dependency checker will search the dependency topology
to ensure every dependent module are checked. If a module
update causes incompatible dependency, the checker will raise
a notification, let the user decide whether to abort the update
or keep a replica of old version and enforce the update to a
new container.

Towards this, TinyEdge includes a dependency checking
policy for each module, which is basically a mapping between
configuration field and dependency topology changes. For ex-
ample, the stored_data field of the MQTT connector can
be local, Redis, or InfluxDB. If this field changes from
local to Redis, the dependency of the MQTT connector in
the dependency topology will change from None to Redis.

The dependency checking algorithm should not only check
and include/exclude every dependent module, but also detect
circular dependency. One strawman method is using the hash
set, which inserts every dependent module into a hash set, the
circular dependency is detected when finding out the incoming
module is already in the set. Fast-slow pointer algorithm is
another commonly used method, the fast pointer takes one
more step than the slow one, there is a circular dependency
if the two pointers finally meet each other. In our scenario,
however, edge system update happens from time to time,
including version update of existing modules or addition of
new modules, which requires faster circular detection. Towards
this, TinyEdge proposes a hybrid hash based fast-slow pointer
method that caches dependent modules in the hash set at
system set-up stage, during which the fast-slow pointer is used
to detect circular dependency. While at system update stage,
the hash set method is used when the number of update or
addition modules is below a certain threshold.

The basic workflow of TinyEdge dependency checking
algorithm is summarized in Algorithm 1: For every module
m in the user-selected module list U, we recursively check
whether or not every strongly related module of module m
in the dependency topology D is included/excluded, during
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1 $$deviceManagement${

2 DROP TABLE IF EXISTS 'device’;

3 CREATE TABLE 'device’ (

4 ’id’ int (11) unsigned NOT NULL AUTO_INCREMENT,

5 "name’ wvarchar (100) DEFAULT NULL,

6 'created’ datetime DEFAULT NOW(),

7 ’changed’ datetime DEFAULT NULL,

8 ’status’ wvarchar (20) DEFAULT NULL,

9 $$deviceManagement "authentication%{

0 'password’ varchar (100) DEFAULT NULL, %}

1 %$$deviceManagement "broker%{’is_superuser’
tinyint (1) DEFAULT 0, %}

12 PRIMARY KEY ('id’)

13 )

14 %}

1
1

Fig. 6.  An example of customization code.

which the hybrid circular detection method is imposed.

Algorithm 1 Dependency checking algorithm

Input: dependency topology D, user-selected module list U
Output: module list that includes all dependent modules L
1: function CHECK(D, m, & L)

L.insert(m)

while D.index(m).next ! = NULL do
m = m.next
if m.check ! = True then

if DETECT (m, L) then
CHECK(D,m,&L)
else RAISE 'circular detected’
else continue
10: m.check = True
. if len(U) >= threshold then
12: DETECT = Fast_Slow
13: else DETECT = Hash_Set
14: for all m € U do
15: CHECK(D,m,&L, DETECT)

16: return L

R A A e

—
—_

TinyEdge customization format. When the module depen-
dency changes, the functionalities should change accordingly.
Towards this, TinyEdge designs a customization format that
can help to change module functionality during or after the
system customization phase. Specifically, We use % as an
escape character, %$ represents the conditions to enable the
code block between %{ and %}. For module functionali-
ties, conditions after %$ will have the form like “<module
name>.<functionality name>". Fig. 6 is an example code
block embedded in TinyEdge MySQL module. When the
MySQL module is selected by the user, if the device man-
agement is also selected (line 1), then this code block will
be loaded; otherwise, it will be deleted. In addition, if the
authentication module is selected and its interactions with the
device management are enabled, the MySQL will insert the
password column in ’device’ table (line 9).

rom tinyedge.modules import mqgtt, influxdb, grafana

1

2 from tinyedge.utils import Serverless

3

4 MQTT_Connector = mgtt ("emg")

5 data = MQTT_Connector.get_data ("device_id")

6 topic_id_1 = MQTT_Connector.Pub(data)

7 func = Serverless (language={"name":"python", "version":"
3.6"}, package=[{"numpy":"1.14"}], path)

0

func.Sub (topic_id_1)

9 data = func.get_results (x*args)
10 topic_id_2 = func.Pub(data)

11 Influx = influxdb ("influxdb")
12 data = Influx.Sub (topic_id_2)
13 InfluxDB.insert (data)

14 Grafana = grafana("grafana")

15 data = Grafana.Sub (topic_id_1)
16 Grafana.visualize (data)

Fig. 7. Application code snippets of the IoT system.

B. Application-level Customization

In the application-level customization phase, the user first
writes application code using TinyEdge Domain Specific Lan-
guage (DSL). TinyEdge runtime will parse the code into dif-
ferent parts and generate message queue topics, then distribute
each part to designated execution modules or engines.

TinyEdge DSL. Existing edge platforms require users
learning how to use each module and program with them,
which usually needs to co-operate among different program-
ming languages. To facilitate application-level rapid cus-
tomization, TinyEdge proposes a DSL that abstracts TinyEdge
modules’ functionalities to provide a general coding form and
reduce programming time. TinyEdge DSL can be divided into
the following three parts:

(D Module function call. TinyEdge creates a virtual class
for customization modules that wraps all functions the
modules own. Like get_data() of MQTT_Connector and
visualize() of Grafana in Fig. 7.

(2 Message routing. Within the virtual class, there are two
virtual functions that each module has to implement,
which are Pub() and Sub(). The Pub() function takes
charge of wrapping data and creating topics in TinyEdge
message queue engine. While the Sub() function is re-
sponsible for subscribing topics from TinyEdge message
queue engine and unwrapping data.

(3 Serverless function. Serverless is a class that used to
define the programming language, version, and require-
ments. After filling in the serverless code template, func-
tion get_results() will pass the configuration and code
to TinyEdge serverless engine, execute the serverless
function and get the results.

The different alternatives of the serverless function are
generally referred to as RESTful APIL. Although RESTful
API share the merit of ease-of-programming, the serverless
function still shows better potentials as it 1) has comprehensive
infrastructures both in industrial and open-source community;
2) thoroughly decouples functional and service code modules;
3) has little requirement of module backend, which makes it
easier to implement; 4) do not need to operate all the time.
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Rule 1

Rule 2

Fig. 8. TinyEdge topic generation mechanism, where M represents Module,
Tp represents Topic, App represents Application.

Dynamic topic generation. Although TinyEdge DSL re-
quires defining message routing in a point-to-point manner,
i.e., users need to explicitly define the data flow by specifying
the publisher and the subscriber, TinyEdge won’t actually gen-
erate topics accordingly in the following two circumstances:

1) Within the same application, multiple modules subscribe
from different topics that are published by the same module.

2) Across different applications in the same system, a same
set of modules subscribe from different topics.

For circumstance 1), sending the same data twice to differ-
ent topics is apparently a waste of resources. While circum-
stance 2) may also result in sub-optimal resource utilization
for similar reasons.

Existing message queue engines like Apache Kafka don’t
take dynamic topic generation into account as they don’t have
the global view of the topic semantic information. In order to
make better use of edge platform resources, we propose and
implement two rules (as shown in Fig. 8) in state-of-the-art
message queue engines to cope with the two circumstances
mentioned above:

Rule 1: Within the same application, only define one
topic for multiple modules subscribe from the same publisher
module.

Rule 2: Across different applications in the same system,
dynamically merge topics that have the exact same subscriber
module.

Reversely, when the two circumstances are no longer satis-
fied, TinyEdge will split up the merged topics.

However, dynamically generate topics at runtime have the
following two problems: 1) Potential message loss. Whenever
we try to merge or split topics, the messages may keep com-
ing through, which may cause message loss. 2) None-trivial
dynamic topic switching. Topic publishing or subscribing is
usually hard-coded in the applications. If we want to switch
topics at runtime, we may need to modify the application
code, recompile, and restart the whole application, which is
definitely too heavy-weight.

For problem 1), TinyEdge will first generate the new topic
for both circumstances and migrate all the incoming messages
to the new topic but keep the old ones. When the buffer of an
old topic is empty, TinyEdge will then destroy the old topic
and transfer the feed to the new one.

For problem 2), existing edge computing platforms like

Azure IoT Edge leverage module twins, allowing users to
update some module configurations at runtime. The problem is
twofold. Firstly, Azure runtime have to monitor configuration
updates for interested modules, which is resource unfriendly.
Secondly, modules have to tightly bind with Azure runtime
and Azure cloud services, which has the ”locked-in” issue.
Other solutions like Spring Boot can help to inject the
changed configurations into memory, which, unfortunately,
is programming-language-specific and not general enough.
While TinyEdge uses MQTT configuration files to enable
runtime reload in a general and decoupled way; then we
borrow the idea of IO multiplexing techniques that is widely
used in caching engine like Redis, aggregating the monitoring
tasks of multiple modules into a single process with a queue
to reduce the resource consumption.

As a result, the number of topics will be reduced and
TinyEdge can leverage load balancing techniques that most
message queue engines will provide to balance the traffic load
of a topic.

IV. PERFORMANCE ESTIMATION SERVICE

After building an edge computing system, the developer
may wonder what’s the performance of this customized sys-
tem. Given that, developers are able to come up with intelligent
scheduling policies like workload offloading, auto-scaling,
and access control. Considering device and communication
protocol heterogeneity, performance estimation under edge
computing is a hard nut to crack. Existing industrial edge
computing platforms only gives cost models for their edge
services, which shed little lights on how to build or select
hardware specifications and connection methodologies that can
yield acceptable performance.

TinyEdge performance estimation service aims at giving
users awareness of the resource consumption or key metrics
like the latency, workload of the customized system. Towards
this, TinyEdge includes module profiles (Section IV-A) and
builds multi-dimensional models to describe key metrics of
the customized system (Section IV-B).

A. Module Profile

TinyEdge module profile is the key information source for
the performance models. A module profile contains module
category, customization information (functionality and config-
uration), resources requirement (memory, storage, and connec-
tion), and performance models for specific module functions.

TinyEdge splits modules into three categories in accordance
with their functionalities: 1) System modules that make up
the essential part of an edge system, like device management,
logging, authentication, database, etc. 2) Processing modules
that take charge of the computation part of an edge system,
like data filter, video analyzing, object recognition, etc. 3)
Connecting modules that are responsible for accessing IoT
devices or transmitting data to the cloud, like HTTP, MQTT,
Bluetooth connector, etc.

Customization information is extracted at the system-level
customization stage. It records functionality and configuration
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{"memory":300,"unit":"MB"},
{"storage":85,"unit":"MB"}
I8 I

{"port":8086,"desp":"Info..."},
{"database":"test","desp":"Info..."},...

{"admin_enabled":"True","desp":"Info..."},
{"admin_port":8083,"desp”:"Info..."},...

{"memory":20,"unit":"MB"},
{"storage":260,"unit":"MB"}

"config":{
"basic":[
{"port":3000,"desp":"Info..."},
{"config":"/config","desp":"Info..."},...
1.
"advance":[
{"data":"/var/data”,"desp”:"Info...”},
{"logs":"/var/logs","desp”:"Info..."}...

]

b

"functionality":[],

"model":[],

"requirement":[
{"memory":25,"unit":"MB"},
{"storage":250,"unit":"MB"}

Fig. 9.

An example of three module profiles for the IoT system, where config stores basic and advance configurations; functionality stores the choice of

module functionality; model stores the route to the module performance model; requirement stores resources (including connection) requirement.

of each user-selected module, serving as an input of TinyEdge
configuration generator that maps high-level configuration into
specific formats like Dockerfile or Kubernetes.

Unlike customization information, resources requirement
and metrics models are given offline. We sample the average
resource consumption and build metrics models for each
module at different hardware specifications. While connection
describes the hardware requirement that a module needs.
For example, a Bluetooth connector requires an underlying
hardware chipset to operate.

B. Performance Models

There are plenty of performance metrics that can describe
different faucets of a system like latency, workload, accuracy,
energy, etc. TinyEdge chooses to model latency and workload
for the following two reasons: 1) they are both general
performance metrics that can be inferred from a wide range of
modules; 2) they can describe two essential edge computing
features, which are low latency and device heterogeneity.
Although accuracy is a critical metric especially for machine
learning modules, but the results tend to have little variance
to the environment, if not, it is usually module-specific factors
that have the most prominent influence. As a result, it is hard to
build a general model for accuracy. As for energy, TinyEdge
focuses on edge nodes powerful enough to run containers,
which are usually equipped with power supply.

Existing solutions like [9] and [10] haven’t consider the
number of accessing devices, which could potentially affect
both latency and workload on the edge, especially in multi-
device and multi-protocol scenarios; on the other hand, over-
simplify the problem and cause inferior results.

Workload model. The main functionality of workload
model is to give a general form of workload under different
types of hardware platforms (in terms of system architectures
or CPU models) for distinct IoT applications. Due to the
heterogeneity, TinyEdge uses black-box methods to build the
workload model.

TinyEdge takes the workload vector and hardware features
as input and uses load average that represents a fraction of
CPU consumption as the model output for conformity. The
workload vector is defined by the module developer (like
frame sampling rate and resolution for image processing mod-
ules, the number of accessing end devices and transmission
data size for connecting modules);

While the hardware features mainly include hardware ar-
chitectures (x86, ARM, etc.) and the CPU specifications (the
number of cores and threads, main frequency, maximum
frequency, etc.), which will serve as inputs of a compensation
function that map hardware features to the workload variation
that is compared with the average workload getting under
baseline hardware resources. Then we have:

wi = gi(w;) + c(H),

where w; represents the workload vector of module i, g; is
the workload model for module i that built upon some kinds of
machine learning methods, similarly, ¢(H) is the compensa-
tion model that takes different hardware specifications as input
and outputs the compensate value.

Given the workload models, we can get a general form of
workload for application A4:

i€ A

W = Zwi.
i=1

Latency model. The main functionality of latency model is
to predict the end-to-end latency (from the time that a request
is generated to the time that it is finished) of an IoT applica-
tion. Different from workload, latency model can sometimes
be well described in a more formal mathematical way besides
its heterogeneity, so we use a hybrid black- and white-box
methods to build the latency model. More specifically, we
use black-box methods to estimate the execution time while
leverage white-box methods to characterize the waiting time.
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The edge device is running an OS where requests of
different modules are coming from time to time. Therefore, as
the number of requests in the system increase, workload of the
OS will gradually rise to the maximum level. Finally, some of
the requests will have to queue till they can be processed. This
scenario can be well analyzed by the queuing theory. Unlike
previous works [10], [11] that using M/M/1 or M/M/C
queuing model, TinyEdge leverages a more realistic model
which encode existing workload by using M /M? /C' queuing
model [12].

Traditional M®/M”/C means the o requests arrive at
a rate of A, the executors can deal with 3 requests at a
rate of pu, both arrival and execution time follow exponential
distribution; there are C' executors in the system. In order
to integrate workload into queuing model, TinyEdge treats «
as the workload requirement (in terms of load average) of
module i, regards [ as the available workload in the system.
For example, assume the InfluxDB requires 0.05 CPU under a
specific hardware resource with C' = 4 CPUs, current available
workload is 0.80 CPU, we will first transform the workload
into integer by multiplying a workload unit W,,;; = 100,
then the corresponding queuing model will be A1° /M&° /400,
where W4, = 400.

With the definition above, we can get the waiting time of
module i t2% in the system as follows:

Wmax
ti_uait ;, 7/\ — fPc . P
k3 (wl /L ) f’L (gl(wl)) + ,U . W'maz! . (1 _ p)g

where P, (the probability of no request in the system) and
p (system intensity) are defined as follows:

P07

Winaz=Wunit
= (W’rnaa;p)n (Wmaw)Wm‘” meal, .
Po(p) = [ o) | Wonas) T 707
n=0 n max+ P
a\
P()\uﬂaoé,ﬁ) - m
mazx

Given the queuing model, we build two different types
of latency models for processing and connecting modules
separately, considering the unique features of these two types
of modules. We omit the latency model of system modules
because they usually work as the coordinator between the
above two types of modules, which tend to take up more time.

(1) Latency model of processing modules. For processing
modules, the latency mainly consists of the execution time
(estimated by a black-box method given the workload) plus the
waiting time (estimated by the queuing model). Note that we
have to assume the hardware resources like memory or storage
is sufficient for a module in terms of building a performance
model, otherwise the model will be meaningless. We have:

li = fip(g1(w')) + t?ait(wh /\mu)

(2) Latency model of connecting modules. For connecting
modules, the latency is mainly composed by data transmission

time, RTT, execution time, and the waiting time. We have:

L= D i + D o
‘" B
where D;, D, represents the size of input and output data,
B is the current bandwidth.
After building different latency models for processing and
connecting modules, we can get a general form of latency for
application A:

+ RTT + fz(c(gb(w7)) + t?ait(wh )\7 p’)a

i€ A

Li = Z Li.
i=1

Function f(), g() or ¢() for latency, workload and compen-
sation model is decided by a function selector. We implement
several machine learning algorithms (like linear regression,
SVM, and random forest) and will carry out a thorough test
for models of each module under different hardware resources
to select the best one to store.

V. IMPLEMENTATION

In this section, we present some details of TinyEdge about
how modules are selected, deployed, and interacted with each
other on the edge device.

Module selection. TinyEdge customization modules are
used to customize edge systems. In order to decide which
modules to include, we conduct a small investigation of 20+
edge computing related papers and 6 mainstream industrial
edge computing platforms, and find that the main function-
alities of edge systems for [oT applications basically include
1) connector for both IoT devices and cloud services, 2) data
processing (like stream analytics and machine learning), 3)
traditional database (like SQLite), 4) security.

We implement HTTP, Modbus, and Bluetooth connector,
integrate EMQ [13], a popular open-source MQTT broker
as our MQTT connector for 1); develop a simple data filter
module and an object recognition module based on ResNet for
2); integrate MySQL for 3); implement a device authentication
module for 4).

Moreover, edge systems are born to embrace a variety
of heterogeneous IoT devices, the generating data is usually
time-serial. But most of the industrial edge platforms provide
neither device management module nor time-series database at
the edge. So we implement a lightweight device management
module and incorporate InfluxDB (time-series database), Mon-
goDB (semi-relational database), and Grafana (a visualization
tool for time-series data) to compensate for the issue.

Then we build a container registry, integrating all modules
above. Note that users can select module(s) both in TinyEdge
container registry and the Docker Hub. However, TinyEdge
temporarily does not provide the customization option for
modules from the Docker Hub; recommendation service will
not take those into account, either.

Module compaction. Recall that each TinyEdge module
is wrapped in a single Docker image. Lots of factors will
affect the size of a module, sometimes a single-line-difference
in Dockerfile will generate two modules that identical in
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functionality but have hundreds of megabytes variation in
module size. In order to reduce module pulling time, TinyEdge
adopts two techniques to produce modules of a much smaller
size with little impact on the functionalities.

(1) Use smaller base images. Base image is basically a op-
erating system in the container, usually the larger a base image
is, the more functionalities it can provide. Take python3.6 as
an example, Python:3.6-alpine uses alpine as its base image,
which takes up around 100 MB; while Python:3.6-buster uses
Debian, which takes up almost 1000 MB. However, many
functionalities can be redundant like package management and
build tools. In order to reduce the module size, we choose
smaller base images in TinyEdge.

(2) Optimized Dockerfile. When using Dockerfile to build
a Docker image, each command in the file will create an
image layer. Files from upper layers can not be deleted by
lower layers that are created later, they can only be set to
invisible. As a result, files should have been deleted are
still physically existed. To keep a slim module: 1) TinyEdge
borrows the best practice in the Docker community when
writing a Dockerfile by grouping file-addition commands like
apt update/upgrade/install and file-removal ones
like apt clean/autoremove. 2) TinyEdge will flatten a
built image with tools like Docker-squash [14] or Compact
[15] to run clean up commands in the container, squash
multiple image layers into one and finally generate an even
more compact Docker image.

OS-specific deployment tools. The deployment tools are
basically a set of scripts that designed for different OSes like
Windows, MacOS, and all kinds of Linux distributions. It
will take charge of checking necessary runtime environment
of TinyEdge (including Docker, Docker-compose, and Kuber-
netes in multi-device settings), installing and/or upgrading the
environment, building and/or running module(s) as configured,
and finally activating them all at once. Taking the deployment
package as input, the customized system will be deployed,
up and running on the edge device with the help of the
deployment tools.

TinyEdge runtime. TinyEdge runtime is a module running
at the edge, whose responsibility is to parse and execute
application code and interact with TinyEdge cloud, enabling
the customized system to update. This module is mainly
composed of a message queue engine and a serverless engine.

There is a wide range of open-source or commercial mes-
sage queues and serverless engines. To embrace the diversity
of engines and enhance system scalability, TinyEdge abstracts
the main functionalities of both message queue and serverless
engines, allowing users to implement connectors for different
engines as their wish. In this paper, we choose to implement
Apache Kafka [16] and OpenFaas [17] connector for TinyEdge
message queue engine and serverless engine for their availabil-
ity and popularity.

VI. EVALUATION

In this section, we present the evaluation of TinyEdge.
Section VI-A presents the evaluation cases. Section VI-B -

VI-C shows the main results in terms of system-, application-
level customization, and performance modeling.

A. Evaluation Cases

We use three real-world cases to evaluate different facets
of TinyEdge. They are representative because they 1) cover
main aspects of edge computing data flow, i.e., data collection,
processing, visualization, and storage, which have already
widely testified in the field and adopted in edge computing
benchmark works like [18]; 2) are comprehensive enough to
support a holistic system composed of device management,
authentication, IoT device connector, in addition to above data-
related functionalities.

« Data connection and visualization (IoT): Reading data
from a temperature and humidity sensor through different
transmission protocols (including HTTP, MQTT, BLE,
and Modbus), then storing the data in InfluxDB and
finally visualizing them via Grafana.

o Intelligent data processing (EI): Receiving data input
through HTTP, posing them to different edge intelligent
applications (including object recognition, speech-to-text
conversion, text-audio synchronization, and real-time face
detection), then returning the results.

o A hybrid-analysis system (GIoTTO): It is part of
the CMU GIoTTO project [19] that can receive sensor
data via HTTP and MQTT protocol, store data in In-
fluxDB and visualize via Grafana, support virtual sensors’
training and testing, store physical and virtual sensor
information in MySQL.

B. Customization Related Results

Above all, we compare the customization results of the
aforementioned evaluation cases using TinyEdge, EdgeX, and
Azure IoT Edge. We choose latter two as the baseline because
they represent state-of-the-art industrial edge computing plat-
forms that are relatively mature, support third-party modules
integration, barely have hardware dependencies, and more
importantly, both use Docker as the backbone. Previous works
have proved that the performance of Docker is not only
acceptable in comparison to native code but also better off
than other alternatives like KVM, Xen, and LXC in general
cases [20], [21], [22], [23], [24].

TABLE I summaries the modules information of each case
with respect to each platform, where v means the platform has
the module that has the exact same capability; while % means
only a similar module is available and extra configuration is
needed; - means the module isn’t required in this case; X
means the platform doesn’t have the module yet. For fairness,
we use built-in modules that marked with v and x in EdgeX
and Azure IoT Edge, and follow the set up flow of their own;
while those marked with x are replaced by TinyEdge modules
and integrated in a third-party manner.

System-level customization. For system-level customiza-
tion, we carry out experiments to justify the efficiency of
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TABLE I
DEPLOYMENT MODULES COMPARISON BETWEEN TINYEDGE AND STATE-OF-THE-ART EDGE PLATFORMS

Platform TinyEdge Azure loT Edge EdgeX Notations
Component/Use Case | loT El GloTTO| loT El GloTTO | loT El GloTTO J Have the out-of-the-box
Time Series Database v - v X - X X - X component

Traditional Database - - V - - V - - X
- X Do not have the component
Device Connector V V V V v v v v v P
- n n N ~ N _ - .
Data_ V|su||zat|on‘ X X X X - No need to use in the case
Intelligent Analysis - v v - * * - X X
Device Management - - V - X - - * N Have similar component but
Virtual Device V V V V v v v v needs extra effort to use
63
= Set-up 10x107*
X . —A— hybrid
54 Configuration Azure = 8x10-* hash
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9 4] =S fs
45 4 2 5x10
Azure EdgeX Azure i)
— I I | EdgeX 5 2x107*
c
€ 361 EdgeX : 0 X X
= ge 0x10~* g ¥ = -
g I TinyEdge 0 100 200 300 400 500
= 271 ! TinyEdge Total number of dependent modules
TinyEdge 1 (a) Circular Dependency Detection Time Comparison
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Fig. 10.  System-level customization time comparison among TinyEdge, 310 . T 2F9 g £ 18
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TinyEdge configuration reduction methods, fine-grained mod-
ule dependency checking and the module compaction methods
we apply.

(1) End-to-end customization time comparison. We ab-
stract the end-to-end system customization into three stages,
environment set-up (container and edge system/application
project creation), configuration for modules, and deployment
(container image building and pulling) three stages. Each stage
was carried out by volunteers with different experience in edge
development multiple times followed by a step-by-step manual
and the averaged results are given. Fig. 10 shows the system-
level customization time comparison of three platforms. We
only present the overall result rather than the break down of
each modules for the sake of clarity.

We can see clearly that: 1) With the help of configuration
partitioning and sharing, TinyEdge module configuration time
is obviously shorter than the baseline; 2) assisted by more
concise workflow, OS-specific deployment tool, and smaller
module size, TinyEdge can achieve faster deployment process.
Note that TinyEdge set-up time is slightly longer than that of
EdgeX because TinyEdge requires users to login and create an
edge system project; though Azure loT Edge share the same
process as TinyEdge, it has more fields to fill in.

(2) Dependency checking efficiency comparison. As
TinyEdge still under primary stage of development, the mod-
ules and their dependency are not sufficient enough to run a
thorough experiment, so we carry out a simulation with 500
simple dependent modules (no module versioning included)

Topic number Topic number
(b) Topic number v.s. Performance(c) Topic nhumber v.s. Resource

Fig. 11. Dependency and Topic Generation Evaluation Results.

and apply three circular dependency detection algorithms. Fig.
11 (a) gives the comparison result, which shows that TinyEdge
hybrid approach performs better than other two methods,
considering the dynamic changing of edge system update.

(3) Module compaction comparison. In order to evaluate the
efficiency of module compaction techniques TinyEdge adopts,
we build two sets of modules for the above three cases,
and compared the ultimate module size before (marked as
”Original” in TABLE II) and after (marked as ”Optimized” in
TABLE II) module compaction. Results show that the module
compaction techniques can efficiently reduce the module size
with an average of 58.89%.

Application-level customization. For application-level cus-
tomization, we carry out experiments to justify the efficiency
of TinyEdge DSL and dynamic topic generation.

(1) Lines of code comparison. Similar with system-level
customization, we abstract application-level customization into
three stages, module function call (including necessary con-
nection set-up, functional operations, etc.), message routing
(defining interactions between modules both on edge and
cloud), and serverless code (other supplementary logic that is
beyond the capability of the selected modules). Fig. 12 shows
the lines of code comparison of the three platforms.

We can see clearly that the lines of code is greatly reduced
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TABLE II
MODULE SIZE BEFORE & AFTER COMPACTION COMPARISON.

Case Module Original | Optimized| Reduction
(1) Virtual Device 930 MB [ 105 MB
(2) MQTT 85 MB 85 MB
loT (3) InfluxDB 260 MB [ 260 MB 54.10%
(4) Grafana 250 MB [ 250 MB
(1) Virtual Device Same as above
El (5) Obj Recognition 1980 MB] 1150 MB 56.87%
BIAISIO) Same as above
(6) Device Management | 935 MB | 120 MB
GIoTTO |(7) Authentication 935 MB [ 120 MB 65.70%
(8) Virtual Sensor 1210 MB| 390 MB
(9) MySQL 380 MB [ 380 MB
600
B Module Function Call EdgeX
Message Routing
5001 Serverless
Azure
» 4004
e
(s}
o
G 300 1
- 200 1 EdgeX Azure
100

loT El
Evaluation Cases

GloTTO

Fig. 12. Application-level customization code comparison among TinyEdge,
EdgeX, and Azure IoT Edge.

when using TinyEdge. The main reason is that TinyEdge
sacrifices certain level of flexibility and wraps up module
module function call and message routing into a much simpler
form, while users still need to write codes to accomplish the
same functionality when using EdgeX and Azure IoT Edge.
For example, message routing in Azure IoT Edge requires
users configure each routing destination that has about 20 lines
of extra code for each module; similarly, message routing
in EdgeX requires to register a export client with about 25
lines of extra code for each module. Moreover, the baseline
platforms require users follow different processes and use
various methods to call distinct modules’ functionality, which
leads to much steeper learning curve than TinyEdge.

(2) Dynamic topic generation. For the lack of current cases,
we also carry out simulations to justify the efficiency of
TinyEdge dynamic topic generation technique. We manually
generate 1-64 topics, and measure the throughput of producer
& consumer, as well as the resource consumption.

We can see from Fig. 11 (b) & (c) that as the number
of topics goes up, the throughput of both producer and con-
sumer drop rapidly, and the memory and storage consumption
gradually go up. Under current combinations of TinyEdge
modules, we find out that the total number of topics can
be reduced around 20%, which, as a result, will improve
the throughput of the message queue engine and reduce the
resource consumption proportionally.
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Fig. 13. Performance Modeling Comparison Between TinyEdge and Con-
ventional ML Methods.

C. Performance Estimation Related Results

In this subsection, we carry out experiments to evaluate the
performance of TinyEdge workload and latency models.

Preliminaries. Before the evaluation results, we first present
the basic set up of the experiments.

(1) Baseline models. Considering the limited resources
available on edge devices, and it’s quite hard to get thousands
of training samples under different hardware specifications,
we only include traditional machine learning models rather
than deep neural networks that are popular in recent years.
At current stage, we compare TinyEdge with three traditional
algorithms: linear regression, SVM, and random forest.

(2) Data collection. To get enough sampling data under
different hardware specifications, we use a CPU frequency
scaling tool called cpupower [25] to alter CPU frequency,
use a network emulator NetEm [26] to adjust network speed,
and write a script to generate different workload. We’ve also
set various resource limitation strategies like cpuQuota,
cpuPeriod, and memoryLimit in Docker to simulate
different resource conditions. The data sampling under each
conditions were carried out several times and get the average
to reduce variance. Finally, we’ve obtained around 1.5k for
training and 0.5k for testing in each case.

Model comparison. We build models for processing and
connecting modules of all three cases, and get the overall mean
absolute error rate for workload and latency model is 0.83%
and 15.47% respectively.

(1) Workload models. Fig. 13 (a) shows the comparison re-
sults of TinyEdge workload model and other baseline models.
The results indicate that TinyEdge, SVM and Random Forest
perform well as workload model, which mainly because the
output of workload model, i.e., the CPU utilization, has a
small variation under different settings and makes it more pre-
dictable. While the linear regression performs poorly because
as the workload reach the bottleneck, it’s hard to get more
CPU shares for the lack of resources. Note that for workload
model, TinyEdge uses a function selector to choose a best one
as its backbone algorithm, so it will definitely perform better
than the baseline.

(2) Latency models. Fig. 13 (b) shows the comparison
results of TinyEdge latency model and other baseline models.
The results indicate that TinyEdge performs obviously better
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than other baseline models, which mainly because TinyEdge
not only considers the deep down mechanisms for both pro-
cessing and connecting modules using a more realistic queuing
model, but also leverage certain amount of sampled data to
build a machine learning model to compensate the variation
under different settings. While the base line models performs
not so well because 1) the correlations of input features and
latency is too complex to model using simple models; 2) the
sampled data may not be sufficient enough to fully unveil the
potential of black-box methods.

VII. RELATED WORK

We classify the related work into VII-A edge computing
platforms and VII-B performance modeling.

A. Edge Computing Platforms

Due to the prominence of edge computing, a number of edge
computing platforms with different purposes have emerged,
targeting at stream analysis [27], [28], data sharing [29],
security [30], and most importantly, deploying systems by
integrating cloud-edge-end resources [31], [4], [6], [5]. In this
section, we focus on the last category. The comparison be-
tween our work and the existing works will also be discussed.

Cloudlet. Cloudlet [31] is devised to instantiate customized
service software on edge devices rapidly; also simplify the
challenge of meeting the peak bandwidth demand of multiple
users interactively generating and receiving media. Cloudlet
uses VM overlay as a building block of edge computing
system, which results in low extensibility as it’s OS-dependent,
users need to create different overlays for the same system on
alternative OSes.

Paradrop. Paradrop [4] is another representative edge com-
puting platform in academia. It’s a specific edge comput-
ing platform that provides modest computing and storage
resources at the extreme edge of the network, whose main
purpose is to allow third-party developers to flexibly create
new types of services. However, Paradrop doesn’t provide
resource and performance models, and its instance tool is
supported on limited hardware or VM.

EdgeX. EdgeX [5] is an open-source project supported by
Linux Foundry, whose main purpose is to build an inter-
operable platform to enable an ecosystem of plug-and-play
components that unifies the marketplace and accelerates the
deployment of IoT solutions across a wide variety of industrial
and enterprise use cases [5]. When customizing a new system,
EdgeX requires to deploy all its core modules, which incurs
high redundancy. Limited modules are supported in EdgeX, a
great deal of manual work is needed to integrate new ones.

Azure IoT Edge. Azure IoT Edge [6] is the symbol of
industrial edge computing platforms. As an industrial platform
with a powerful cloud backbone, Azure IoT Edge can basically
satisfy all we need to deploy an edge system, but its the high
integration with the cloud that makes it hard to use, users have
to get familiar with a wide range of cloud, edge services.

Unlike the above works, TinyEdge not only leverages the
container-based design to achieve high extensibility but also a

customization framework to specify the dependency, interac-
tion and high-level configuration, as well as the profiling based
system performance modeling. These can help to achieve
more improvements in customization time, application logic
expressiveness, and give coarse-grained guidance for users.

B. Performance Modeling

Performance modeling plays an important role in various
systems. It not only provides essential information for system
developers about how well a system operates but also gives
users awareness of distinct aspects of a system.

Although there are a number of performance metrics that
are valuable to analysis a system, we focus on the latency
and workload in our scenario. MobiQoR [32] is an opti-
mization framework that minimizes service response time and
app energy consumption, giving the offloading strategy for
a series of edge nodes. The service response time and app
energy consumption are modeled in the white-box manner,
considering features like time of data transfer, task processing
and power. But MobiQoR does not take the effect of multi-
thread execution and dynamic workload into consideration, to
tackle this issue Guan et al propose Queec [9]: a QoE-aware
edge computing system, where they use regression technique
to model the execution time and workload of specific edge
computing applications like speech and face recognition. Ma-
heshwari et al [10] present a scalable edge cloud system model
that incorporates M/M/C queuing model as its computation
model and divides the overall latency into transmission delay,
routing node delays and the cloud processing time.

Unlike the above works, TinyEdge proposes a hybrid white
and black solution to combine the merits of both methods and
integrates the resource constraint into the model, making the
estimation results more reliable.

VIII. CONCLUSION

In this paper, we present TinyEdge, a holistic rapid cus-
tomization edge system for data-intensive IoT applications.
TinyEdge uses a top-down approach for software design. Users
only need to select and configure modules of an edge system,
specify critical interaction logic with TinyEdge interfaces,
without worrying about the underlying hardware. TinyEdge
takes the configuration as input, automatically generates the
deployment package as well as the performance models after
sufficient profiling. We implement TinyEdge and evaluate
its performance using benchmarks and three real-world case
studies. Results show that TinyEdge achieves rapid customiza-
tion of edge systems, reducing 44.15% of customization time
and 67.79% lines of code on average while giving accurate
performance estimation in various settings.
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